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Abstract. The Architectural Patterns for Parallel Programming is alleation
of patterns related with a method for developing the coation structure of
parallel software systems. These architectural pattenesagpplied based on
(a) the available parallel hardware platform, (b) the pdedlprogramming lan-
guage of this platform, and (c) the analysis of the problersdive, in terms of
an algorithm and data.

In this paper, it is presented the application of the arctiiteal patterns along
with the method for developing a coordination structure $otving the Two-
dimensional Wave Equation. The method used here takesftrenation from
the problem analysis, applies an architectural patterntfoe coordination, and
provides some elements about its implementation.

This paper is aimed to those who are working with the PattéondParallel
Software Design. Nevertheless, it presents only a parteofrtathod, at the ar-
chitectural level, for solving the Two-dimensional Waveu&pn. Other two
further design issues should be addressed at the commiamicatd synchro-
nization levels, which are not presented here.

1. Introduction

A parallel program ishe specification of a set of processes executing simulteshg@nd
communicating among themselves in order to achieve a coroijentive[18, 19]. This
definition is obtained from the original research work ingled programming provided
by E.W. Dijkstra [5], C.A.R. Hoare [9], P. Brinch-Hansen [ahd many others, who have
established the main basis for parallel programming todRgctitioners in the area of
parallel programming recognize that the success of a paplbgram is able to achieve
—commonly, in terms of performance- is affected by threenrfesitors:(a) the hardware
platform,(b) the programming language, afa) the problem to solve.

Nevertheless, parallel programming still represents d lpaoblem to the soft-
ware designer and programmer: we do not yet know how to salwarlaitrary problem
efficiently on a parallel system of arbitrary size. Henceappal programming, at its actual
stage of development, does not (cannot) offer universatisaols, but tries to provide some
simple ways to get started. By sticking with some commonlfgreoordinations it is
possible to avoid a lot of errors and aggravation. Many agghies have been presented up
to date, proposing descriptions of top-level coordinatiohserved in parallel programs.
Some of these descriptions ar@utlines of the Progranp], Programming Paradigms
[10], Parallel Algorithms[7], High-level Design Strategig41], andParadigms for Pro-
cess Interactionpl]. These descriptions provide common overall coordoraisuch as,



for example,“master-slave”, “pipeline”, “work-pile”, @nothers. They represent assem-
blies of parallel software components which are allowedintuianeously execute and
communicate. Furthermore, these descriptions are expertipport the design of par-
allel programs, since all of them introduce common forms sugh assemblies exhibit.

The Architectural Patterns for Parallel Programmini@2, 13, 14, 15, 16, 17, 19]
represent a Software Patterns approach for designing thxelication of parallel pro-
grams. These Architectural Patterns attempt to save theftamation “jump” between
algorithm and program. They are definedfasdamental organizational descriptions of
common top-level structures observed in parallel softveyrtem$12, 18, 19], specify-
ing properties and responsibilities of their sub-systeans, the particular form in which
they are assembled together into a coordination.

Architectural patterns allow software designers and agaais to understand com-
plex software systems in larger conceptual blocks and tleétions, thus reducing the
cognitive burden. Furthermore, architectural pattermvige several “forms” in which
software components of a parallel software system can betsted or arranged, so the
overall coordination of such a software system arises. ikectural patterns also pro-
vide a vocabulary that may be used when designing the owmaitination of a parallel
software system, to talk about such a structure, and feasiiplementation techniques.
As such, the Architectural Patterns for Parallel Prograngmefer to concepts that have
formed the basis of previous successful parallel softwastems.

The most important step in designing a parallel programtkittk carefully about
its overall coordination. The Architectural Patterns fardlel Programming provide
descriptions about how to organize a parallel program,rwathe following advantages
[12, 13, 14, 15, 16, 17, 18, 19]:

e The Architectural Patterns for Parallel Programming (ag &aftware Pattern)
provide a description that links a problem statement (imgeof an algorithm and
the data to be operated on) with a solution statement (ing@fran organization
or coordination of communicating software components).

e The partition of the problem is a key for the success or failoira parallel pro-
gram. Hence, the Architectural Patterns for Parallel Rrogning have been
developed and classified based on the kind of partition egpb the algorithm
and/or the data present in the problem statement.

e As aconsequence of the previous two points, the ArchitatRatterns for Parallel
Programming can be applied depending on characteristicgifm the algorithm
and/or data, which drive the selection of a potential pakaliructure by observ-
ing and studying the characteristics of order and deperdamong instructions
and/or datum.

e The Architectural Patterns for Parallel Programming idtrce parallel structures
or coordinations as forms in which software components @massembled or
arranged together, considering the different partitignivays of the algorithm
and/or data.

Nevertheless, even though the Architectural Patterns &oalel Programming



have these advantages, they also present the disadvahtagelescribing, representing,
or producing a complete parallel program in detail. Otheftvre Patterns are still
needed for achieving this. Anyway, the Architectural Rati€or Parallel Programming
are proposed as a way of helping a software designer to appéyalel structure as a
starting point when designing a parallel program.

In summary, the Architectural Patterns for Parallel Prograng are briefly de-

scribed as follows [12, 13, 14, 15, 16, 17, 18, 19]:

1.

ThePipes and Filters patterms an extension of the original Pipes and Filters
pattern for parallel systems, using a functional paratelapproach where com-
putations follow a precise order of operations on orderdd.d@ommonly, each
component represents a different step of the computatidrata is passed from
one computation stage to another along the whole structure.

. TheParallel Hierarchies patterrextends the original approach of th e Layers Pat-

tern for parallel systems, considering a functional patiain in which the order
of operations on data is the importan t feature. Parallelksmroduced when two
or more hierarchies of layers are able to run simultaneppsiyorming the same
computation.

. TheCommunicating Sequential Elements pattisrnsed when the desig n prob-

lem at hand can be understood in terms of domain paralleliShee same ope
rations are performed simultaneously on different piedesrdered data. Op-
erations in each component depend on partial results irhheigr components.
Usually, this pattern is presented as a network or logicaictir e, conceived
from the ordered data.

. TheManager-Workers pattercan be considered as a variant of the Ma ster-Slave

pattern for parallel systems, introducing an activity pllati@m where the same
operations are performed on ordered data. Each componefatmpe the same
operations, independent of the processing activity ofratbenponents. Different
pieces of data are processed simultaneously. Preservie@tder of data is the
important feature.

. TheShared Resource patterma specialisation variant of the Black board pattern

introducing activity parallelism characteristics, wh different computations are
performed simultaneously, without a prescribed order, roleieed data.

Table 1 classifies the Architectural Patterns for ParaltegRamming, regarding

their type of parallelism and their homogeneous or hetareges nature.

Functional Domain Activity
Parallelism Parallelism Parallelism
Heterogeneous Pipes and Filters Shared Resource
Processing
Homogeneous | Parallel Hierarchies Communicating Manager-Workers
Processing Sequential Elements

Table 1: Classification of the Architectural Patterns forafal Programming.

For a complete exposition of the Architectural Patterndfarallel Programming,



refer to [12, 18, 19], and further work on each particulah#ectural pattern in [13, 14,
15, 16, 17].

2. Problem Analysis — The Two-dimensional Wave Equation

The present paper attempts to demonstrate the use of theée¥tcinal Patterns for Paral-
lel Programming for designing a coordination structure twdves the Two-dimensional
Wave Equation. The objective is to show how an architecpettern can be applied so it
deals with the functionality and requirements presentisphoblem.

However, in order to apply any architectural pattern forafiat programming to
develop the coordination, several issues about the probtarts constraints should be
briefly presented in this section. Hence, the Two-dimerai@fave Equation is described
here considering two different points of viewa) from the point of view of the user,
which is described in the “Problem Statement” section, @)dom the point of view of
the developer, who requires a more computational desonitf the problem, which is
presented in the “Specification of the Problem” section.

2.1. Problem Statement

Partial differential equations are commonly used to dbescphysical phenomena that
continuously change in space and time. One of the most stadie well known of such
equations is the Wave Equation, which mathematically notied movement of a region
that exposes certain dimensionality, with certain fixedhfgobn its boundaries. In the
present example, the region is represented by a two-dimealsentity, for example, a
surface of homogeneous material and uniform thicknessstitreundings of the surface
are perfectly fixed, and on every extreme, each point keepowaik, fixed position. As
the points on the surface moves up and down, their positienteally reaches a value
or state in which such a point has a steady, time-indepempeition maintained by the
motion. Thus, the problem of solving the Two-dimensional/&quation is to define the
equilibrium position of a poink(i, j) for each time-step on the two-dimensional surface.
Normally, the wave is studied as a variation of height thtoag elementary piece of the
surface, a finite element. This is represented as a smaldimensional element of the
surface, with a given size.

Any water surface is an example of the behavior modelled &ytio-dimensional
Wave Equation. Particularly at open air, water surfacedyce waves, which depend on
the height of the water on a particular coordinate, at a@aer time (Figure 1).

In order to develop a program that models the Two-dimens$ifaae Equation,
first it is necessary to obtain its discrete form. So, theasgrfis divided into elements,
each element with an area @f. This area is relatively very small regarding the size of
the whole surface, so the element can be considered as a pimigt within the surface.
So, this results on a divided surface, in which three typesarhents can be considered
(Figure 2).

1. Interior elements, which require computing their pasitieach one having to sat-
isfy the Two-dimensional Wave Equation.



Figure 1. A water surface, as an example of the Two-dimensional Wave Equation.
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Figure 2. A divided surface with three types of elements: interior (I), exterior (E),
and corner (C).
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Figure 3. An element (4, j) and its four neighboring elements.

2. Extreme elements, which are fixed.
3. Corner elements, which are not considered for the sinoulat

The discrete solution of the Two-dimensional Wave Equadrased on the idea
that the motion of interior elements is due to the heightedéhces between an element
and all its neighbors. Let us suppose the position or heightngle interior element
h(i, j), whose four adjacent neighboring elements/die— 1, j), h(i,j — 1), h(i + 1, j)
andh(i,j + 1) (Figure 3).

Notice that for the case, should be small enough so each neighboring element’s
position can be approximated. So, the discrete two-dino@asWave Equation is reduced
to a difference equation. Rearranging it, it is noticeablat the position of a single
element in the next time-step is given as:

1
h(i, j,t+1) = h(i, j,8)=h(3, j,¢=1)+ 7 (h(i+1, 5, ) +h(i=1, j, ) +h(i, j+1,8)+h(i, j—1,1))

This is the discrete equation to be used in order to obtainrallphnumerical
solution for the Two-dimensional Wave Equation.

2.2. Specification of the Problem

From the previous section, it is noticeable that using aaserflivided inta:? elements,
the discrete form of the Wave Equation implies a computdioreach discrete element
of the surface. Moreover, taking into consideration theetias another dimension, so
the evolution of temperatures through time can be obsearatisolving it using a direct
method on a sequential computer, requires somethinglike) units of time. Suppose
a numerical example: for a surface with, for examplé, = 65536, it is required to
solve about the same number of average operations, ingpldating point coefficients.
Using a simple sequential computer with a clock frequencglodut 1MHz, it would
take about eight years for the computation. Furthermorgcathat naive changes to the
requirements (which are normally requested when perfagrthis kind of simulations)
produce drastic (exponential) increments of the numbepefations required, which at
the same time affects the time required to calculate thisamioal solution.



e Problem StatementThe Two-dimensional Wave Equation, in its discrete rep-
resentation, and for a relatively large number of elemeamtshich a surface is
divided, can be computed in a more efficient way by:

1. using a group of software components that exploit the dmoensional
logical structure of the surface, and

2. allowing each software component to simultaneouslyutale the position
value for all elements of the surface at a given time step.

The objective is to obtain a result in the best possible taflieient way.

e Descriptions of the data and the algorithrithe relatively large number of ele-
ments in which the surface is divided and the discrete reptason of the Two-
dimensional Wave Equation is described in terms of data aralgorithm. The
divided region is normally represented as a large surfaterms of a matrix of
(n+2) x (n+ 2) of elements, which represent every discrete point of thiaser
and encapsulate some floating point data which represemesition, as shown
as follows. Thus, a whole surface consistaibinterior elements andn exterior
elements.

class El ement inplenents Runnabl e{

private int i = -1;

private int j = -1;

private Elenent(int i, int j){
this.i =1i;
this.j =j;

new Thread(this).start();

}

EachElement object is able to compute a local discrete wave equation asa s
gle thread. Thus, it exchanges messages with its neighthelaments (whether
interior or exterior) and computes its local position, dtofes:

cl ass El enent inpl enents Runnabl e{

private int i = -1;
private int j = -1;

public void run(){
double [] position, received, total
position = new position[3];

for (int k =0; k <iterations; k++) {
/1 Here the actual el enent exchanges data with
/1 its neighboring el enments
total = 0.0;
for (int n =0; n < 4; n++) {
/'l Receive from nei ghboring el enents
/[l and put it in the variable ‘received



total += received;

}
position[ k] += position[k-1] - position [k-2] + (1/4 * received]

}

Each time step, a new position for the loéaément object is obtained from the
previous positions and the positions of the neighboringnelgs (whether inte-
rior or exterior). Notice that the term “time step” implies #erative method in
which the operation requires four coefficients. The al¢ponidescribed takes into
consideration an iterative solution of operations, knowmnetaxation The sim-
plest relaxation method is the Jacobi relaxation [10, 7jriljvhich the position
of each and every interior element is simultaneously apprated using its local
previous positions and the positions of its neighbors (amglthe one presented
here). Other relaxation methods include the Gauss-Seatietation [1] and the
successive over-relaxation (SOR) [1]. Iterative methedsltto be more efficient
than direct methods.

¢ Information about parallel platform and programming larape The parallel
system available for this example is a SUN SPARC Enterpris20 Server. This
is a multi-core, shared memory parallel hardware platfavith 1 x 8-Core Ultra-
SPARC T2, 1.2 GHz processors (capable of running 64 thredad$ybytes RAM,
and Solaris 10 as operating system [20]. Applications ferggarallel platform can
be programmed using the Java programming language [7, 8].

¢ Quantified requirements about performance and .c@stis application example
has been developed in order to test the parallel systemibedan the previous
point. The idea is to experiment with the platform, testisgunctionality in time,
and how it maps with a domain parallel application. So, thenrabjective is sim-
ply to test and characterize performance (in terms of exattitne) regarding the
number of processes/processors involved in solving a firedpsoblem. Thus, it
is important to retrieve information about the executiondiconsidering several
configurations, changing the number of processes on thadlglashared memory
platform.

2.3. A simple example

In order to clarify how the discrete equation presented ictiSe 2.1 works, so a parallel
numerical solution for the Two-dimensional Wave Equatian be obtained, this section
presents a simple (but interesting) numerical examplewfthe discrete equation is used.

For this example, let us consider the simplest discretimatf a two-dimensional
surface: & x 5 mesh, which takes into consideration the three types ofeshehts (as
shown in Figure 2), but considering the simplest case (Eigr

e 9interior (1),
e 12 exterior (E), and
e 4 corner (C).



h(0,0)n(0,1) h(0,2)|h(0,3)|(0,4)

h(1,0)|h(1,1)h(1,2)|h(1,3)jh(1,4)

h(2,0)|h(2,1)|h(2,2)|h(2,3)|h(2,4)

h(3,0)|h(3,1)|h(3,2)|h(3,3)|h(3,4)

h(4,0)|h(4,1)|h(4,2)|h(4,3) h(4,4)

Figure 4. A simple example of a discretized surface with three types of elements:
9 interior (1), 12 exterior (E), and 4 corner (C).

As mentioned in Section 2.1, the corner elements are not igsdtie calcula-
tion. However, the position of exterior elements are neddethlculate the position of
interior elements. So, the position value of exterior eletme fixed to zero. Finally, the
discrete Two-dimensional Wave Equation is needed to catieuhe positions of all the
interior elements. Moreover, this example considers arakimterior element/(2, 2)),
whose motion depends directly on its previous two positessvell as the positions of
its neighboring interior elements.

Also, in the time dimension, the example requires someainialues of the po-
sitions of all the interior elements. For these, some randdeger values are used in
time-steps 0 and 1. Hence, applying these initial valuesgabath the fixed values of the
exterior elements, the discrete Two-dimensional Wave &g used to obtain the po-
sition values of the interior elements for three more tirteps. Of course, the execution
can be extended to a larger number of time-steps, but thiglsiexample only attempts
to show what is going on in the simplest terms. The positidnesfor all the interior
elements, for 5 time-steps, are shown in the following Table

Time | h(1,1) R(1,2) h(1,3) R(2,1) | R(2,2) | R(2,3) Rh(3,1) h(3,2) h(3,3)
step

0 3.0 4.0 8.0 6.0 2.0 1.0 0.0 5.0 3.0
1 2.0 3.0 6.0 5.0 3.0 5.0 1.0 6.0 2.0
2 1.0 1.75 0.0 0.5 5.75 6.75 3.75 2.5 1.75
3 -0.4375 0.4375 -3.875 -1.875 5.625 3.625 3.5 -0.6875 2.0625

4 -1.796875 | -0.984375| -2.859375| -0.203125| 0.25 -2.171875| -1.140625| -0.390625| 1.046875

Notice how the position of each interior element (represerash(i, j), where

i =1,2,3andj = 1,2, 3) changes through time as the expression of the discrete Two-

dimensional Wave Equation dictates. So, the next positicenointerior element at a
given time-step depends @a) the previous position of such an interior elemeh),the



actual position of such an interior element, gellthe average of the actual positions
of the neighboring elements (whether interior or extermrsuch an interior element.

Thus, the positions at time-step 2 are obtained from thetipasiat time-steps 0 and 1;

the positions at time-step 3 are obtained from the positairtsme-steps 1 and 2; the

positions at time-step 4 are obtained from the positionsrad-steps 2 and 3; and so on.
This behavior of the discrete Two-dimensional Wave Equmaisoprecisely what we are

trying to numerically model here.

3. Coordination Design

In this section, thérchitectural Patterns for Parallel Programmiri@2, 18, 19] are used
along with the the information from the Problem Analysispnder to apply an architec-
tural pattern for developing a coordination that solvesTive-dimensional Wave Equa-
tion.

3.1. Specification of the System

e The scope This section aims to describe the basic operation of thallphsoft-
ware system, considering the information presented in thbl®m Analysis step
about the parallel system and its programming environmigased on the prob-
lem description and algorithmic solution presented in thevipus section, the
procedure for applying an architectural pattern for a palrablution to the Two-
dimensional Wave Equation problem is presented as foll@&sJ9]:

1. Analyze the design problem and obtain its specificatiémalyzing the
problem description and the algorithmic solution provide noticeable
that the calculation of the Two-dimensional Wave Equat®a step-by-
step, iterative process. Such a process is based on calgutae next
position of each element of the surface through each tinge Stke cal-
culation uses as input two previous position, and the posstof the four
neighbor elements of the surface, and provides the posititire next time
step.

2. Select the category of parallelismObserving the form in which the al-
gorithmic solution partitions the problem, it is clear tiia¢ surface is di-
vided into elements, and computations should be executedltsineously
on different elements. Hence, the algorithmic solutiorcdpsion implies
the category oDomain Parallelism.

3. Select the category of the nature of the processing comp®ridso, from
the algorithmic description of the solution, it is cleartthi@e position of
each element of the surface is obtained using exactly the saloulations.
Thus, the nature of the processing components of a probahigon for
the Two-dimensional Wave Equation, using the algorithnpps®d, is cer-
tainly aHomogeneousne.

4. Compare the problem specification with the architecturatgma’s Prob-
lem section An Architectural Pattern that directly copes with the eate
gories of domain parallelism and the homogeneous naturel[8219]
of processing components is t@®mmunicating Sequential Elements
(CSE) pattern [13, 19]. In order to verify that this architectural pattern
actually copes with the Two-dimensional Wave Equation [@ob let us



compare the problem description with the Problem sectiagheCSE pat-
tern. From the CSE pattern description, the problem is defsg13, 19]:
“A parallel computation is required that can be performed
as a set of operations on regular data. Results cannot be
constrained to a one-way flow among processing stages,
but each component executes its operations influenced by
data values from its neighboring components. Because of
this, components are expected to intermittently exchange
data. Communications between components follow fixed
and predictable paths”
Observing the algorithmic solution for the Two-dimensiowave Equa-
tion, it can be defined in terms of calculating the next positof the
surface elements as ordered data. Each element is opeflatest au-
tonomously. The exchange of data or communication shouloebgeen
neighboring elements of the surface. So, the CSE is chosam adequate
solution for the Two-dimensional Wave Equation, and thehigectural
pattern selection is completed. The design of the paraifélvare system
should continue, based on the Solution section of the CSErpat
e Structure and dynamics Based on the information of the Communicating Se-
guential Elements architectural pattern, it is used hedeszribe the solution to
the Wave Equation in terms of this architectural pattertriscsure and behavior.
1. Structure Using the Communicating Sequential Elements architattur
pattern for the Two-dimensional Wave Equation, the sameatio® is ap-
plied simultaneously to obtain the next position values aheelement.
However, this operation depends on the partial resultssimeighboring
elements. Hence, the structure of the actual solution vegh regular,
two-dimensional, logical structure, conceived from theaee of the orig-
inal problem. Therefore, the solution is presented as adweensional
network of elements that follows the shape of the surfacentidal com-
ponents simultaneously exist and process during the g@rpectimne. An
Object Diagram, representing the network of elements tblkdviis the
two-dimensional shape of the surface and its division iéments, is
shown in Figure 5.

2. Dynamics A scenario to describe the basic run-time behavior of the-Co
municating Sequential Elements pattern for solving the-@imoensional
Wave Equation is shown as follows. Notice that all the elets\ems ba-
sic processing software components, are active at the daree Every
element performs the same position operation, as a piec@afcessing
network. However, for the two-dimensional case here, ebrhent object
communicates with its neighbors as shown in Figure 6.

The processing and communicating scenario is as follows:

— Initially, consider only a singl&lement object,e(i,j). At first, it
exchanges its local temperature value with its neighledird,)),
e(i+1,)), e(i,j-1), ande(i,j+1) though the adequate communication
Channel components. After thisg(i,j) counts with the different
positions from its neighbors.
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Figure 5. Object Diagram of Communicating Sequential Elements for the solution
to the Two-dimensional Wave Equation.

e(i,j):Element :Channel :Channel :Channel :Channel
’m L1 To element e(i-1,j)
’m‘ Tl To element e(i+1,j)
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Figure 6. Sequence Diagram of the Communicating Sequential Elements for
communicating positions through channel components for the Two-dimensional
Wave Equation.



— The position operation is simultaneously started byetfig) com-
ponent and all the other components of the surface.

— In order to continue, all components iterate as many timeg-as
quired, exchanging their partial position values throuugh avail-
able communication channels.

— The process repeats until each component has finishedrtgrat
and thus, finishing the whole Two-dimensional Wave Equatan-
putation.

3. Functional description of component3his section describes each pro-
cessing and communicating software components as pamisof the
Communicating Sequential Elements architectural patestablishing its
responsibilities, input and output for solving the Two-émsional Wave
Equation.

— Element The responsibilities of an element, as a processing com-
ponent, are to obtain the next position from the positiouealit
receives, and make available its own position value so itghher-
ing components are able to proceed.

— Channel The responsibilities of every channel, as a communica-
tion component, are to allow sending and receiving posiian
ues, synchronizing the communication activity betweegmeor-
ing sequential elements. Channel components are devedsibd
main design objective of a following step, called “Commuuaticn
Design”, which is not addressed in this paper.

4. Description of the coordinatiariThe Communicating Sequential Elements
pattern describes a coordination in which multielement objects act as
concurrent processing software components, each oneiagphe same
position operation, wheredhannel objects act as communication soft-
ware component which allow exchanging position values betwsequen-
tial components. No position values are directly sharedranidement
objects, but each one may access only its own private posigitues. Ev-
ery Element object communicates by sending its position value from its
local space to its neighboriri§jement objects, and receiving in exchange
their position values. This communication is normally agyionous, con-
sidering the exchange of a single position value, in a oneneofashion.
Therefore, the data representing the whole two-dimenkguréace repre-
sents the regular logical structure in which data of the jgrolis arranged.
The solution, in terms of a divided surface, is presentedrat&ork that
actually reflects this logical structure in the most trameptiand natural
form [13, 19].

5. Coordination analysis The use of the Communicating Sequential Ele-
ments patterns as a base for organizing the coordinatiompafalel soft-
ware system for solving the Two-dimensional Wave Equatasthe fol-
lowing advantages and disadvantages:

— Advantages

(&) The order and integrity of position results is granted be
cause eacklementobject accesses only its own local po-
sition value, and no other data is directly shared among



(b)

(©)

(d)

(€)

components.

All Element objects have the same structure and behavior,
which normally can be modified or changed without exces-
sive effort.

The solution is easily structured in a transparent amarah
form as a two-dimensional array of components, reflecting
the logical structure of the two-dimensional surface in the
problem.

All Element objects perform the same position operation,
and thus, granularity is independent of functionality, de-
pending only on the size and number of the elements in
which the two-dimensional surface is divided. Changing
the granularity is normally easy, by just adjusting the num-
ber ofElementobjects in which the surface is divided, thus
obtaining a better resolution or precision.

The Communication Sequential Elements pattern can be
easily mapped into the shared memory structure of the par-
allel platform available.

— Liabilities

(@)

(b)

(©)

The performance of a parallel application for solving th
Two-dimensional Wave Equation based on the Communi-
cating Sequential Elements pattern is heavily impacted by
the communication strategy used. For the present example,
the threads available in the parallel platform have to take
care of a large number @&lement objects, so each thread
has to operate on a subset of the data rather than on a single
value. Due to this, dependencies between data, expressed
as communication exchanges, could be a cause of a slow
down in the program execution.

For this example, load balancing is kept by allowing only
a fixed number oElement objects per thread, which tends

to be larger than the number of threads available. Never-
theless, if data would not be easily divided into same-size
subsets, then the computational intensity varies on differ
ent processors. Even though every processor is virtually
equal to the others, maintaining the synchronization of the
parallel application means that any thread that slows down
should eventually catch up before the computation can pro-
ceed to the next step. This builds up as the computations
proceeds, and could impacts strongly on the overall perfor-
mance.

Using synchronous communications implies a significant
amount of effort required to get a minimal increment in
performance. On the other hand, if the communications are
kept asynchronous, it is more likely that delays would be
avoided. This is taken into consideration in the next step,



“Communication Design” (not described here).

4. Implementation

In this section, all the software components described enGbordination Design step
are considered for their implementation using the Javarproing language. Once
programmed, the whole system is evaluated by executing theravailable hardware
platform, measuring and observing its execution througle tiand considering some vari-
ations regarding the granularity.

Here, it is only presented the implementation of the co@uam structure, in
which the processing components are introduced, impldangetite actual computation
that is to be executed in parallel. Further design work isuiregl for developing the
channel as communication and synchronization componésertheless, this design
and implementation goes beyond the actual purposes of &septrpaper.

The distinction between coordination and processing comapts is important,
since it means that, with not a great effort, the coordimaittucture may be modified
to deal with other problems whose algorithmic and data detsamns are similar to the
Two-dimensional Wave Equation, such as the Two-dimensideat Equation [7, 3] or
the Poisson Equation [6].

4.1. Coordination

Considering the existence of a cl&@sannel for defining the communications between
Element objects, the Communicating Sequential Elements architalcpattern is used
here to implement the main Java class of the parallel softaypstem that solves the Two-
dimensional Wave Equation. The clddsenent is presented as follows. This class rep-
resents the Communicating Sequential Elements coordmé#&bir the Two-dimensional
Wave Equation example.

class El ement inplenents Runnabl e{
private static int M= 65536, N = 65536, iterations = 10;
private static Channel [][][] elenment = null;

private int i = -1;

private int j = -1;

public Elenent(int i, int j){
this.i =1i;
this.j =j;

new Thread(this).start();
}
public void run(){
double [] position, received, total;
position = new position[3];
for (int x = 0; x < 3; x++) position[x] = random(10+M ;

for (int iter = 0; iter <iterations; iter++) {
/1 Send | ocal positions to neighbors

if (i <M2 & j >0 &% | < N 1) send(element[i+1][j][0], position);
if (i >1 & j > 0 & & j < N1) send(element[i-1][j][1], position);



if () <N2&%i >0&%i < M1) send(element[i][j+1][2], position);
if (j >1 & i > 0 && i < M1) send(element[i][j-1][3], position);
total = 0.0;
/1l Receive position from nei ghbors
if(i >0&%j >0 && i <M1 & | < NI1/{
for(int x = 0; x < 4; i++){
received = receive(element[i][j][X]);
total += received;

}
}

/1l Insert processing here

}
}

public static void main(String[] args){
segrment = new Channel [M[N}[ 2];
for(int m=0;, m< M m+){
for(int n =0; n <N n++){
for(int p=20; p <4, p+t){
element[m[n][p] = new Channel ();
}
}
}
for(int m=0; m< M m+){
for(int n =0; n <N n++){
new El enent(mn);
}

}
System exit(0);

This class only creates two adjacent, two-dimensionalarehChannel com-
ponents andEl enent components, which represents the coordination structutieeo
whole parallel software system, developed for executinghenavailable parallel hard-
ware platform.Channel components are used for exchanging position values between
neighboringel enment components, each one first sending its own position valuecfwh
is an asynchronous, non-blocking operation), and lateiexetg the position values of
the four neighboring surface components. Using this daiw, ihis possible to sequen-
tially process to obtain the new position of the present comept. This communication-
processing activity repeats as many times as iterationsetefi

4.2. Processing components

At this point, all what properly could be considered “paghtlesign and implementation”
has finished: data is initialized (here, randomly, but it baninitialized with particular
temperature values) and distributed among a collectida @nment components. It is
now the moment to insert the sequential processing whictesponds to the algorithm
and data description found in the Problem Analysis, Thisisedin the clas&l enent ,
where it is commentetinsert processi ng her e, by simply adding the following
code, and considering the particular declarations foratautation:



position[k] += position[k-1] - position [k-2] + (1/4 * received);

The simple, sequential Java code allows that édament component obtains a
local position based on the Two-dimensional Wave Equatitodifying this code implies
modifying the processing behavior of the whole parallebwafe system, so the class
El enent can be used for other parallel applications, as long as ttecy@-dimensional
and execute on a shared memory parallel computer.

5. Summary

The Architectural Patterns for Parallel Programming apdied here along with a method
in order to show how to apply an architectural pattern thaesowith the requirements of
order of data and algorithm present in the Two-dimensiorel&\Equation problem. The
main objective of this paper is to demonstrate, with a paldicexample, the detailed de-
sign and implementation that may be guided by a selectedectlral pattern. Moreover,

the application of the Architectural Patterns for Pardliedgramming and the method for
selecting them is proposed to be used during the Coordm&esign and Implementa-
tion for other similar problems that involve the calculatiof differential equations for a

two-dimensional problem, executing on a shared memonylipbpdatform.
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