
Applying Architectural Patterns for Parallel Programming
Solving the Two-dimensional Wave Equation

Jorge L. Ortega-Arjona
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Abstract. The Architectural Patterns for Parallel Programming is a collection
of patterns related with a method for developing the coordination structure of
parallel software systems. These architectural patterns are applied based on
(a) the available parallel hardware platform, (b) the parallel programming lan-
guage of this platform, and (c) the analysis of the problem tosolve, in terms of
an algorithm and data.

In this paper, it is presented the application of the architectural patterns along
with the method for developing a coordination structure forsolving the Two-
dimensional Wave Equation. The method used here takes the information from
the problem analysis, applies an architectural pattern forthe coordination, and
provides some elements about its implementation.

This paper is aimed to those who are working with the Patternsfor Parallel
Software Design. Nevertheless, it presents only a part of the method, at the ar-
chitectural level, for solving the Two-dimensional Wave Equation. Other two
further design issues should be addressed at the communication and synchro-
nization levels, which are not presented here.

1. Introduction

A parallel program isthe specification of a set of processes executing simultaneously, and
communicating among themselves in order to achieve a commonobjective[18, 19]. This
definition is obtained from the original research work in parallel programming provided
by E.W. Dijkstra [5], C.A.R. Hoare [9], P. Brinch-Hansen [2], and many others, who have
established the main basis for parallel programming today.Practitioners in the area of
parallel programming recognize that the success of a parallel program is able to achieve
–commonly, in terms of performance– is affected by three main factors:(a) the hardware
platform,(b) the programming language, and(c) the problem to solve.

Nevertheless, parallel programming still represents a hard problem to the soft-
ware designer and programmer: we do not yet know how to solve an arbitrary problem
efficiently on a parallel system of arbitrary size. Hence, parallel programming, at its actual
stage of development, does not (cannot) offer universal solutions, but tries to provide some
simple ways to get started. By sticking with some common parallel coordinations, it is
possible to avoid a lot of errors and aggravation. Many approaches have been presented up
to date, proposing descriptions of top-level coordinations observed in parallel programs.
Some of these descriptions are:Outlines of the Program[4], Programming Paradigms
[10], Parallel Algorithms[7], High-level Design Strategies[11], andParadigms for Pro-
cess Interaction[1]. These descriptions provide common overall coordinations such as,



for example,“master-slave”, “pipeline”, “work-pile”, and others. They represent assem-
blies of parallel software components which are allowed to simultaneously execute and
communicate. Furthermore, these descriptions are expected to support the design of par-
allel programs, since all of them introduce common forms that such assemblies exhibit.

TheArchitectural Patterns for Parallel Programming[12, 13, 14, 15, 16, 17, 19]
represent a Software Patterns approach for designing the coordination of parallel pro-
grams. These Architectural Patterns attempt to save the transformation “jump” between
algorithm and program. They are defined asfundamental organizational descriptions of
common top-level structures observed in parallel softwaresystems[12, 18, 19], specify-
ing properties and responsibilities of their sub-systems,and the particular form in which
they are assembled together into a coordination.

Architectural patterns allow software designers and developers to understand com-
plex software systems in larger conceptual blocks and theirrelations, thus reducing the
cognitive burden. Furthermore, architectural patterns provide several “forms” in which
software components of a parallel software system can be structured or arranged, so the
overall coordination of such a software system arises. Architectural patterns also pro-
vide a vocabulary that may be used when designing the overallcoordination of a parallel
software system, to talk about such a structure, and feasible implementation techniques.
As such, the Architectural Patterns for Parallel Programming refer to concepts that have
formed the basis of previous successful parallel software systems.

The most important step in designing a parallel program is tothink carefully about
its overall coordination. The Architectural Patterns for Parallel Programming provide
descriptions about how to organize a parallel program, having the following advantages
[12, 13, 14, 15, 16, 17, 18, 19]:

• The Architectural Patterns for Parallel Programming (as any Software Pattern)
provide a description that links a problem statement (in terms of an algorithm and
the data to be operated on) with a solution statement (in terms of an organization
or coordination of communicating software components).

• The partition of the problem is a key for the success or failure of a parallel pro-
gram. Hence, the Architectural Patterns for Parallel Programming have been
developed and classified based on the kind of partition applied to the algorithm
and/or the data present in the problem statement.

• As a consequence of the previous two points, the Architectural Patterns for Parallel
Programming can be applied depending on characteristics found in the algorithm
and/or data, which drive the selection of a potential parallel structure by observ-
ing and studying the characteristics of order and dependence among instructions
and/or datum.

• The Architectural Patterns for Parallel Programming introduce parallel structures
or coordinations as forms in which software components can be assembled or
arranged together, considering the different partitioning ways of the algorithm
and/or data.

Nevertheless, even though the Architectural Patterns for Parallel Programming



have these advantages, they also present the disadvantage of not describing, representing,
or producing a complete parallel program in detail. Other Software Patterns are still
needed for achieving this. Anyway, the Architectural Patterns for Parallel Programming
are proposed as a way of helping a software designer to apply aparallel structure as a
starting point when designing a parallel program.

In summary, the Architectural Patterns for Parallel Programming are briefly de-
scribed as follows [12, 13, 14, 15, 16, 17, 18, 19]:

1. ThePipes and Filters patternis an extension of the original Pipes and Filters
pattern for parallel systems, using a functional parallelism approach where com-
putations follow a precise order of operations on ordered data. Commonly, each
component represents a different step of the computation and data is passed from
one computation stage to another along the whole structure.

2. TheParallel Hierarchies patternextends the original approach of th e Layers Pat-
tern for parallel systems, considering a functional parallelism in which the order
of operations on data is the importan t feature. Parallelismis introduced when two
or more hierarchies of layers are able to run simultaneously, performing the same
computation.

3. TheCommunicating Sequential Elements patternis used when the desig n prob-
lem at hand can be understood in terms of domain parallelism.The same ope
rations are performed simultaneously on different pieces of ordered data. Op-
erations in each component depend on partial results in neighbour components.
Usually, this pattern is presented as a network or logical structur e, conceived
from the ordered data.

4. TheManager-Workers patterncan be considered as a variant of the Ma ster-Slave
pattern for parallel systems, introducing an activity p arallelism where the same
operations are performed on ordered data. Each compone nt performs the same
operations, independent of the processing activity of other components. Different
pieces of data are processed simultaneously. Preserving t he order of data is the
important feature.

5. TheShared Resource patternis a specialisation variant of the Black board pattern
introducing activity parallelism characteristics, wh eredifferent computations are
performed simultaneously, without a prescribed order, on ordered data.

Table 1 classifies the Architectural Patterns for Parallel Programming, regarding
their type of parallelism and their homogeneous or heterogeneous nature.

Functional Domain Activity
Parallelism Parallelism Parallelism

Heterogeneous Pipes and Filters Shared Resource
Processing
Homogeneous Parallel Hierarchies Communicating Manager-Workers
Processing Sequential Elements

Table 1: Classification of the Architectural Patterns for Parallel Programming.

For a complete exposition of the Architectural Patterns forParallel Programming,



refer to [12, 18, 19], and further work on each particular architectural pattern in [13, 14,
15, 16, 17].

2. Problem Analysis – The Two-dimensional Wave Equation

The present paper attempts to demonstrate the use of the Architectural Patterns for Paral-
lel Programming for designing a coordination structure that solves the Two-dimensional
Wave Equation. The objective is to show how an architecturalpattern can be applied so it
deals with the functionality and requirements present in this problem.

However, in order to apply any architectural pattern for parallel programming to
develop the coordination, several issues about the problemand its constraints should be
briefly presented in this section. Hence, the Two-dimensional Wave Equation is described
here considering two different points of view:(a) from the point of view of the user,
which is described in the “Problem Statement” section, and(b) from the point of view of
the developer, who requires a more computational description of the problem, which is
presented in the “Specification of the Problem” section.

2.1. Problem Statement

Partial differential equations are commonly used to describe physical phenomena that
continuously change in space and time. One of the most studied and well known of such
equations is the Wave Equation, which mathematically models the movement of a region
that exposes certain dimensionality, with certain fixed points on its boundaries. In the
present example, the region is represented by a two-dimensional entity, for example, a
surface of homogeneous material and uniform thickness. Thesurroundings of the surface
are perfectly fixed, and on every extreme, each point keeps a known, fixed position. As
the points on the surface moves up and down, their position eventually reaches a value
or state in which such a point has a steady, time-independentposition maintained by the
motion. Thus, the problem of solving the Two-dimensional Wave Equation is to define the
equilibrium position of a pointh(i, j) for each time-step on the two-dimensional surface.
Normally, the wave is studied as a variation of height through an elementary piece of the
surface, a finite element. This is represented as a small, two-dimensional element of the
surface, with a given size.

Any water surface is an example of the behavior modelled by the Two-dimensional
Wave Equation. Particularly at open air, water surfaces produce waves, which depend on
the height of the water on a particular coordinate, at a particular time (Figure 1).

In order to develop a program that models the Two-dimensional Wave Equation,
first it is necessary to obtain its discrete form. So, the surface is divided into elements,
each element with an area ofa2. This area is relatively very small regarding the size of
the whole surface, so the element can be considered as a single point within the surface.
So, this results on a divided surface, in which three types ofelements can be considered
(Figure 2).

1. Interior elements, which require computing their position, each one having to sat-
isfy the Two-dimensional Wave Equation.



Figure 1. A water surface, as an example of the Two-dimensional Wave Equation.
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Figure 2. A divided surface with three types of elements: interior (I), exterior (E),
and corner (C).
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Figure 3. An element h(i, j) and its four neighboring elements.

2. Extreme elements, which are fixed.
3. Corner elements, which are not considered for the simulation.

The discrete solution of the Two-dimensional Wave Equationis based on the idea
that the motion of interior elements is due to the height differences between an element
and all its neighbors. Let us suppose the position or height of a single interior element
h(i, j), whose four adjacent neighboring elements areh(i− 1, j), h(i, j − 1), h(i+ 1, j)
andh(i, j + 1) (Figure 3).

Notice that for the case,a should be small enough so each neighboring element’s
position can be approximated. So, the discrete two-dimensional Wave Equation is reduced
to a difference equation. Rearranging it, it is noticeable that the position of a single
element in the next time-step is given as:

h(i, j, t+1) ≈ h(i, j, t)−h(i, j, t−1)+
1

4
(h(i+1, j, t)+h(i−1, j, t)+h(i, j+1, t)+h(i, j−1, t))

This is the discrete equation to be used in order to obtain a parallel numerical
solution for the Two-dimensional Wave Equation.

2.2. Specification of the Problem

From the previous section, it is noticeable that using a surface divided inton2 elements,
the discrete form of the Wave Equation implies a computationfor each discrete element
of the surface. Moreover, taking into consideration the time as another dimension, so
the evolution of temperatures through time can be observed,and solving it using a direct
method on a sequential computer, requires something likeO(n4) units of time. Suppose
a numerical example: for a surface with, for example,n2 = 65536, it is required to
solve about the same number of average operations, involving floating point coefficients.
Using a simple sequential computer with a clock frequency ofabout 1MHz, it would
take about eight years for the computation. Furthermore, notice that naive changes to the
requirements (which are normally requested when performing this kind of simulations)
produce drastic (exponential) increments of the number of operations required, which at
the same time affects the time required to calculate this numerical solution.



• Problem Statement. The Two-dimensional Wave Equation, in its discrete rep-
resentation, and for a relatively large number of elements in which a surface is
divided, can be computed in a more efficient way by:

1. using a group of software components that exploit the two-dimensional
logical structure of the surface, and

2. allowing each software component to simultaneously calculate the position
value for all elements of the surface at a given time step.

The objective is to obtain a result in the best possible time-efficient way.

• Descriptions of the data and the algorithm.The relatively large number of ele-
ments in which the surface is divided and the discrete representation of the Two-
dimensional Wave Equation is described in terms of data and an algorithm. The
divided region is normally represented as a large surface interms of a matrix of
(n+2)× (n+2) of elements, which represent every discrete point of the surface,
and encapsulate some floating point data which represents its position, as shown
as follows. Thus, a whole surface consists ofn2 interior elements and4n exterior
elements.
class Element implements Runnable{

...
private int i = -1;
private int j = -1;
...
private Element(int i, int j){

this.i = i;
this.j = j;
new Thread(this).start();

}
...

}

EachElement object is able to compute a local discrete wave equation as a sin-
gle thread. Thus, it exchanges messages with its neighboring elements (whether
interior or exterior) and computes its local position, as follows:
class Element implements Runnable{

...
private int i = -1;
private int j = -1;
...
public void run(){

double [] position, received, total;
position = new position[3];
...
for (int k = 0; k < iterations; k++) {

// Here the actual element exchanges data with
// its neighboring elements
total = 0.0;
for (int n = 0; n < 4; n++) {

// Receive from neighboring elements
// and put it in the variable ‘received’



total += received;
}
position[k] += position[k-1] - position [k-2] + (1/4 * received);

}
}
...

}

Each time step, a new position for the localElement object is obtained from the
previous positions and the positions of the neighboring elements (whether inte-
rior or exterior). Notice that the term “time step” implies an iterative method in
which the operation requires four coefficients. The algorithm described takes into
consideration an iterative solution of operations, known as relaxation. The sim-
plest relaxation method is the Jacobi relaxation [10, 7, 1],in which the position
of each and every interior element is simultaneously approximated using its local
previous positions and the positions of its neighbors (and it is the one presented
here). Other relaxation methods include the Gauss-Seidel relaxation [1] and the
successive over-relaxation (SOR) [1]. Iterative methods tend to be more efficient
than direct methods.

• Information about parallel platform and programming language. The parallel
system available for this example is a SUN SPARC Enterprise T5120 Server. This
is a multi-core, shared memory parallel hardware platform,with 1×8-Core Ultra-
SPARC T2, 1.2 GHz processors (capable of running 64 threads), 32 Gbytes RAM,
and Solaris 10 as operating system [20]. Applications for this parallel platform can
be programmed using the Java programming language [7, 8].

• Quantified requirements about performance and cost. This application example
has been developed in order to test the parallel system described in the previous
point. The idea is to experiment with the platform, testing its functionality in time,
and how it maps with a domain parallel application. So, the main objective is sim-
ply to test and characterize performance (in terms of execution time) regarding the
number of processes/processors involved in solving a fixed size problem. Thus, it
is important to retrieve information about the execution time considering several
configurations, changing the number of processes on this parallel, shared memory
platform.

2.3. A simple example

In order to clarify how the discrete equation presented in Section 2.1 works, so a parallel
numerical solution for the Two-dimensional Wave Equation can be obtained, this section
presents a simple (but interesting) numerical example of how the discrete equation is used.

For this example, let us consider the simplest discretization of a two-dimensional
surface: a5 × 5 mesh, which takes into consideration the three types of of elements (as
shown in Figure 2), but considering the simplest case (Figure 4):

• 9 interior (I),
• 12 exterior (E), and
• 4 corner (C).
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Figure 4. A simple example of a discretized surface with three types of elements:
9 interior (I), 12 exterior (E), and 4 corner (C).

As mentioned in Section 2.1, the corner elements are not usedfor the calcula-
tion. However, the position of exterior elements are neededto calculate the position of
interior elements. So, the position value of exterior element is fixed to zero. Finally, the
discrete Two-dimensional Wave Equation is needed to calculate the positions of all the
interior elements. Moreover, this example considers a central interior element (h(2, 2)),
whose motion depends directly on its previous two positionsas well as the positions of
its neighboring interior elements.

Also, in the time dimension, the example requires some initial values of the po-
sitions of all the interior elements. For these, some randominteger values are used in
time-steps 0 and 1. Hence, applying these initial values along with the fixed values of the
exterior elements, the discrete Two-dimensional Wave Equation is used to obtain the po-
sition values of the interior elements for three more time-steps. Of course, the execution
can be extended to a larger number of time-steps, but this simple example only attempts
to show what is going on in the simplest terms. The position values for all the interior
elements, for 5 time-steps, are shown in the following Table.

Time h(1, 1) h(1, 2) h(1, 3) h(2, 1) h(2, 2) h(2, 3) h(3, 1) h(3, 2) h(3, 3)
step

0 3.0 4.0 8.0 6.0 2.0 1.0 0.0 5.0 3.0

1 2.0 3.0 6.0 5.0 3.0 5.0 1.0 6.0 2.0

2 1.0 1.75 0.0 0.5 5.75 6.75 3.75 2.5 1.75

3 -0.4375 0.4375 -3.875 -1.875 5.625 3.625 3.5 -0.6875 2.0625

4 -1.796875 -0.984375 -2.859375 -0.203125 0.25 -2.171875 -1.140625 -0.390625 1.046875

Notice how the position of each interior element (represented ash(i, j), where
i = 1, 2, 3 andj = 1, 2, 3) changes through time as the expression of the discrete Two-
dimensional Wave Equation dictates. So, the next position of an interior element at a
given time-step depends on(a) the previous position of such an interior element,(b) the



actual position of such an interior element, and(c) the average of the actual positions
of the neighboring elements (whether interior or exterior)of such an interior element.
Thus, the positions at time-step 2 are obtained from the positions at time-steps 0 and 1;
the positions at time-step 3 are obtained from the positionsat time-steps 1 and 2; the
positions at time-step 4 are obtained from the positions at time-steps 2 and 3; and so on.
This behavior of the discrete Two-dimensional Wave Equation is precisely what we are
trying to numerically model here.

3. Coordination Design

In this section, theArchitectural Patterns for Parallel Programming[12, 18, 19] are used
along with the the information from the Problem Analysis, inorder to apply an architec-
tural pattern for developing a coordination that solves theTwo-dimensional Wave Equa-
tion.

3.1. Specification of the System

• The scope. This section aims to describe the basic operation of the parallel soft-
ware system, considering the information presented in the Problem Analysis step
about the parallel system and its programming environment.Based on the prob-
lem description and algorithmic solution presented in the previous section, the
procedure for applying an architectural pattern for a parallel solution to the Two-
dimensional Wave Equation problem is presented as follows [12, 19]:

1. Analyze the design problem and obtain its specification. Analyzing the
problem description and the algorithmic solution provided, it is noticeable
that the calculation of the Two-dimensional Wave Equation is a step-by-
step, iterative process. Such a process is based on calculating the next
position of each element of the surface through each time step. The cal-
culation uses as input two previous position, and the positions of the four
neighbor elements of the surface, and provides the positionat the next time
step.

2. Select the category of parallelism. Observing the form in which the al-
gorithmic solution partitions the problem, it is clear thatthe surface is di-
vided into elements, and computations should be executed simultaneously
on different elements. Hence, the algorithmic solution description implies
the category ofDomain Parallelism.

3. Select the category of the nature of the processing components. Also, from
the algorithmic description of the solution, it is clear that the position of
each element of the surface is obtained using exactly the same calculations.
Thus, the nature of the processing components of a probable solution for
the Two-dimensional Wave Equation, using the algorithm proposed, is cer-
tainly aHomogeneousone.

4. Compare the problem specification with the architectural pattern’s Prob-
lem section. An Architectural Pattern that directly copes with the cate-
gories of domain parallelism and the homogeneous nature [12, 18, 19]
of processing components is theCommunicating Sequential Elements
(CSE) pattern [13, 19]. In order to verify that this architectural pattern
actually copes with the Two-dimensional Wave Equation problem, let us



compare the problem description with the Problem section ofthe CSE pat-
tern. From the CSE pattern description, the problem is defined as [13, 19]:

“A parallel computation is required that can be performed
as a set of operations on regular data. Results cannot be
constrained to a one-way flow among processing stages,
but each component executes its operations influenced by
data values from its neighboring components. Because of
this, components are expected to intermittently exchange
data. Communications between components follow fixed
and predictable paths”.

Observing the algorithmic solution for the Two-dimensional Wave Equa-
tion, it can be defined in terms of calculating the next position of the
surface elements as ordered data. Each element is operated almost au-
tonomously. The exchange of data or communication should bebetween
neighboring elements of the surface. So, the CSE is chosen asan adequate
solution for the Two-dimensional Wave Equation, and the architectural
pattern selection is completed. The design of the parallel software system
should continue, based on the Solution section of the CSE pattern.

• Structure and dynamics. Based on the information of the Communicating Se-
quential Elements architectural pattern, it is used here todescribe the solution to
the Wave Equation in terms of this architectural pattern’s structure and behavior.

1. Structure. Using the Communicating Sequential Elements architectural
pattern for the Two-dimensional Wave Equation, the same operation is ap-
plied simultaneously to obtain the next position values of each element.
However, this operation depends on the partial results in its neighboring
elements. Hence, the structure of the actual solution involves a regular,
two-dimensional, logical structure, conceived from the surface of the orig-
inal problem. Therefore, the solution is presented as a two-dimensional
network of elements that follows the shape of the surface. Identical com-
ponents simultaneously exist and process during the execution time. An
Object Diagram, representing the network of elements that follows the
two-dimensional shape of the surface and its division into elements, is
shown in Figure 5.

2. Dynamics. A scenario to describe the basic run-time behavior of the Com-
municating Sequential Elements pattern for solving the Two-dimensional
Wave Equation is shown as follows. Notice that all the elements, as ba-
sic processing software components, are active at the same time. Every
element performs the same position operation, as a piece of aprocessing
network. However, for the two-dimensional case here, each element object
communicates with its neighbors as shown in Figure 6.

The processing and communicating scenario is as follows:
– Initially, consider only a singleElement object,e(i,j). At first, it

exchanges its local temperature value with its neighborse(i-1,j),
e(i+1,j), e(i,j-1), ande(i,j+1) though the adequate communication
Channel components. After this,e(i,j) counts with the different
positions from its neighbors.
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Figure 5. Object Diagram of Communicating Sequential Elements for the solution
to the Two-dimensional Wave Equation.
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Figure 6. Sequence Diagram of the Communicating Sequential Elements for
communicating positions through channel components for the Two-dimensional
Wave Equation.



– The position operation is simultaneously started by thee(i,j) com-
ponent and all the other components of the surface.

– In order to continue, all components iterate as many times asre-
quired, exchanging their partial position values through the avail-
able communication channels.

– The process repeats until each component has finished iterating,
and thus, finishing the whole Two-dimensional Wave Equationcom-
putation.

3. Functional description of components. This section describes each pro-
cessing and communicating software components as participants of the
Communicating Sequential Elements architectural pattern, establishing its
responsibilities, input and output for solving the Two-dimensional Wave
Equation.

– Element. The responsibilities of an element, as a processing com-
ponent, are to obtain the next position from the position values it
receives, and make available its own position value so its neighbor-
ing components are able to proceed.

– Channel. The responsibilities of every channel, as a communica-
tion component, are to allow sending and receiving positionval-
ues, synchronizing the communication activity between neighbor-
ing sequential elements. Channel components are developedas the
main design objective of a following step, called “Communication
Design”, which is not addressed in this paper.

4. Description of the coordination. The Communicating Sequential Elements
pattern describes a coordination in which multipleElement objects act as
concurrent processing software components, each one applying the same
position operation, whereasChannel objects act as communication soft-
ware component which allow exchanging position values between sequen-
tial components. No position values are directly shared among Element
objects, but each one may access only its own private position values. Ev-
ery Element object communicates by sending its position value from its
local space to its neighboringElement objects, and receiving in exchange
their position values. This communication is normally asynchronous, con-
sidering the exchange of a single position value, in a one to one fashion.
Therefore, the data representing the whole two-dimensional surface repre-
sents the regular logical structure in which data of the problem is arranged.
The solution, in terms of a divided surface, is presented as anetwork that
actually reflects this logical structure in the most transparent and natural
form [13, 19].

5. Coordination analysis. The use of the Communicating Sequential Ele-
ments patterns as a base for organizing the coordination of aparallel soft-
ware system for solving the Two-dimensional Wave Equation has the fol-
lowing advantages and disadvantages:

– Advantages
(a) The order and integrity of position results is granted be-

cause eachElement object accesses only its own local po-
sition value, and no other data is directly shared among



components.
(b) All Element objects have the same structure and behavior,

which normally can be modified or changed without exces-
sive effort.

(c) The solution is easily structured in a transparent and natural
form as a two-dimensional array of components, reflecting
the logical structure of the two-dimensional surface in the
problem.

(d) All Element objects perform the same position operation,
and thus, granularity is independent of functionality, de-
pending only on the size and number of the elements in
which the two-dimensional surface is divided. Changing
the granularity is normally easy, by just adjusting the num-
ber ofElementobjects in which the surface is divided, thus
obtaining a better resolution or precision.

(e) The Communication Sequential Elements pattern can be
easily mapped into the shared memory structure of the par-
allel platform available.

– Liabilities

(a) The performance of a parallel application for solving the
Two-dimensional Wave Equation based on the Communi-
cating Sequential Elements pattern is heavily impacted by
the communication strategy used. For the present example,
the threads available in the parallel platform have to take
care of a large number ofElement objects, so each thread
has to operate on a subset of the data rather than on a single
value. Due to this, dependencies between data, expressed
as communication exchanges, could be a cause of a slow
down in the program execution.

(b) For this example, load balancing is kept by allowing only
a fixed number ofElement objects per thread, which tends
to be larger than the number of threads available. Never-
theless, if data would not be easily divided into same-size
subsets, then the computational intensity varies on differ-
ent processors. Even though every processor is virtually
equal to the others, maintaining the synchronization of the
parallel application means that any thread that slows down
should eventually catch up before the computation can pro-
ceed to the next step. This builds up as the computations
proceeds, and could impacts strongly on the overall perfor-
mance.

(c) Using synchronous communications implies a significant
amount of effort required to get a minimal increment in
performance. On the other hand, if the communications are
kept asynchronous, it is more likely that delays would be
avoided. This is taken into consideration in the next step,



“Communication Design” (not described here).

4. Implementation

In this section, all the software components described in the Coordination Design step
are considered for their implementation using the Java programming language. Once
programmed, the whole system is evaluated by executing it onthe available hardware
platform, measuring and observing its execution through time, and considering some vari-
ations regarding the granularity.

Here, it is only presented the implementation of the coordination structure, in
which the processing components are introduced, implementing the actual computation
that is to be executed in parallel. Further design work is required for developing the
channel as communication and synchronization components.Nevertheless, this design
and implementation goes beyond the actual purposes of the present paper.

The distinction between coordination and processing components is important,
since it means that, with not a great effort, the coordination structure may be modified
to deal with other problems whose algorithmic and data descriptions are similar to the
Two-dimensional Wave Equation, such as the Two-dimensional Heat Equation [7, 3] or
the Poisson Equation [6].

4.1. Coordination

Considering the existence of a classChannel for defining the communications between
Element objects, the Communicating Sequential Elements architectural pattern is used
here to implement the main Java class of the parallel software system that solves the Two-
dimensional Wave Equation. The classElement is presented as follows. This class rep-
resents the Communicating Sequential Elements coordination for the Two-dimensional
Wave Equation example.

class Element implements Runnable{
private static int M = 65536, N = 65536, iterations = 10;
private static Channel[][][] element = null;
private int i = -1;
private int j = -1;
public Element(int i, int j){

this.i = i;
this.j = j;
new Thread(this).start();

}
public void run(){

double [] position, received, total;
position = new position[3];
for (int x = 0; x < 3; x++) position[x] = random(10*M);

for (int iter = 0; iter < iterations; iter++) {
// Send local positions to neighbors
if (i < M-2 && j > 0 && j < N-1) send(element[i+1][j][0], position);
if (i > 1 && j > 0 && j < N-1) send(element[i-1][j][1], position);



if (j < N-2 && i > 0 && i < M-1) send(element[i][j+1][2], position);
if (j > 1 && i > 0 && i < M-1) send(element[i][j-1][3], position);
total = 0.0;
// Receive position from neighbors
if(i > 0 && j > 0 && i < M-1 && j < N-1){

for(int x = 0; x < 4; i++){
received = receive(element[i][j][x]);
total += received;

}
}
// Insert processing here

}
}
public static void main(String[] args){

segment = new Channel[M][N}[2];
for(int m = 0; m < M; m++){

for(int n = 0; n < N; n++){
for(int p = 0; p < 4; p++){

element[m][n][p] = new Channel();
}

}
}
for(int m = 0; m < M; m++){

for(int n = 0; n < N; n++){
new Element(m,n);

}
}
System.exit(0);

}
}

This class only creates two adjacent, two-dimensional arrays ofChannel com-
ponents andElement components, which represents the coordination structure of the
whole parallel software system, developed for executing onthe available parallel hard-
ware platform.Channel components are used for exchanging position values between
neighboringElement components, each one first sending its own position value (which
is an asynchronous, non-blocking operation), and later retrieving the position values of
the four neighboring surface components. Using this data, now it is possible to sequen-
tially process to obtain the new position of the present component. This communication-
processing activity repeats as many times as iterations defined.

4.2. Processing components
At this point, all what properly could be considered “parallel design and implementation”
has finished: data is initialized (here, randomly, but it canbe initialized with particular
temperature values) and distributed among a collection ofElement components. It is
now the moment to insert the sequential processing which corresponds to the algorithm
and data description found in the Problem Analysis, This is done in the classElement,
where it is commentedInsert processing here, by simply adding the following
code, and considering the particular declarations for its computation:



position[k] += position[k-1] - position [k-2] + (1/4 * received);

The simple, sequential Java code allows that eachElement component obtains a
local position based on the Two-dimensional Wave Equation.Modifying this code implies
modifying the processing behavior of the whole parallel software system, so the class
Element can be used for other parallel applications, as long as they are two-dimensional
and execute on a shared memory parallel computer.

5. Summary

The Architectural Patterns for Parallel Programming are applied here along with a method
in order to show how to apply an architectural pattern that copes with the requirements of
order of data and algorithm present in the Two-dimensional Wave Equation problem. The
main objective of this paper is to demonstrate, with a particular example, the detailed de-
sign and implementation that may be guided by a selected architectural pattern. Moreover,
the application of the Architectural Patterns for ParallelProgramming and the method for
selecting them is proposed to be used during the Coordination Design and Implementa-
tion for other similar problems that involve the calculation of differential equations for a
two-dimensional problem, executing on a shared memory parallel platform.
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