
The Parallel Layers Pattern
A Functional Parallelism Architectural Pattern for Parallel Programming

Jorge L. Ortega-Arjona
Departamento de Matemáticas
Facultad de Ciencias, UNAM
jloa@fciencias.unam.mx

Abstract. The Parallel Layers pattern is an architectural pattern for parallel programming
used when the problem is understood in terms of functional parallelism. This pattern
describes a solution in a layered form, in which each layer is composed of two or more
components that are able to simultaneously exist and perform the same operation.

1. Introduction

Parallel processing is the division of a problem, presented as a data structure and/or a set of
actions, among multiple processing components that operate simultaneously. The expected
result is a more efficient completion of the solution to the problem. The main advantage of
parallel processing is its ability to handle tasks of a scale that would be unrealistic or not cost-
effective for other systems [CG88, Fos94, ST96, Pan96]. The power of parallelism centres on
partitioning a big problem in order to deal with complexity. Partitioning is necessary to divide
such a big problem into smaller sub-problems that are more easily understood, and may be
worked on separately, on a more “comfortable” level. Partitioning is especially important for
parallel processing, because it enables software components to be not only created separately
but also executed simultaneously.

Requirements of order of data and operations dictate the way in which a parallel computation
has to be performed, and therefore, impact on the software design [OR98]. Depending on how
the order of data and operations are present in the problem description, it is possible to
consider that most parallel applications fall into one of three forms of parallelism: functional
parallelism, domain parallelism, and activity parallelism [OR98]. Examples of each form of
parallelism are the Pipes and Filters pattern [OR05], representing functional parallelism; the
Communicating Sequential Elements pattern [OR00], as an example of domain parallelism;
and Shared Resource [OR03], as an instance of activity parallelism.

2. The Parallel Layers Pattern

The Parallel Layers pattern is an extension of the Layers pattern [POSA96, Shaw95, SG96]
with elements of functional parallelism. Parallelism is introduced when two or more
components of a layer are able to simultaneously exist, normally performing the same
operation. Components can be created statically, waiting for calls from higher layers, or
dynamically, when a call triggers their creation.

 Copyright  2007 Jorge Luis Ortega-Arjona. Permission is granted to copy for the SugarLoafPLoP 2007
conference. All other rights reserved.

Functional parallelism is the form of parallelism described in terms of a series of
simultaneous step ordered operations, applied on ordered data with predictable organization
and interdependencies. As each step represents a change of the input for value or effect over
time, an amount of communication between components in the solution should be considered.
Conceptually, data is repeatedly divided and transformed [CG88, Fos94, Pan96].

Example: Single-Source Shortest Path Algorithm

Search is defined as a systematic examination of a problem space, starting from an initial state
and terminating at some final state or states. Each of the intermediate states, between the
initial and the final states, can be reached by applying an operation on a given state. This
operation is determined by an objective function that assures heading to the final state.

Any search problem can be conveniently represented using a graph. Given a graph is a set of
vertices and edges. Each edge has a positive integer weight representing the distance between
the vertices it connects (Figure 1). The objective, hence, is to search for the shortest path
between the source vertex and the rest of the vertices.

Figure 1. A typical graph

The Single-Source Shortest Path (SSSP) algorithm was originally proposed by Dijkstra, and
described later by Chandy and Misra [CM88]. It is an efficient algorithm for exhaustively
searching into this kind of graph representation. The SSSP algorithm is applied in cycles. In a
cycle, the algorithm selects the vertex with the minimum distance, marking it as having its
minimum distance determined. On the next cycle, all unknown vertices (those vertices whose
minimum distance to the others has not been determined) are examined to see if there is a
shorter path to them via the most recently marked vertex. Algorithmically, the SSSP algorithm
reduces the search time to O(N2) because N-1 vertices are examined on each cycle. Hence, N1
cycles are still required to determine the minimum distances.

A sequential approach considers that the graph can be represented by an adjacency matrix G,
whose elements represent the weight of the edges between vertices. In this approach two
additional data structures are used: a boolean array Known, to determine which vertices have
had their distance established, and an array D to record the most recently established distance
between the source and vertices. A function MinV returns the vertex with the shortest

3

0

1 2

10

20

40 15

unknown distance of the two vertices passed as its arguments. If one vertex is known, the
other vertex is returned. It is assumed that MinV is not called with two known vertices. The
sequential pseudocode is shown in Figure 2.

Figure 2. Pseudocode for the sequential SSSP algorithm.

However, this algorithm can potentially be carried out more efficiently by:
1. Using a group of parallel components that exploit the tree structure representing the

search, and
2. Simultaneously calculating the value minimum distance for each vertex, and only then,

computing and marking the overall minimum distance vertex.

Context

Starting the design of a software program for a parallel system, using a particular
programming language for certain parallel hardware. Consider the following contextual
assumptions:
• The problem to solve, expressed as an algorithm and data, is found to be an open ended

one, that is, involving tasks of a scale that would be unrealistic or not cost-effective for
other systems to handle. Consider the SSSP algorithm example: since its execution time is
O(N2), if the number of vertices is large enough, the whole computation grows up to an
enormous extent.

• The parallel platform and programming environment to be used are known, offering a
reasonably level of parallelism in terms of number of processors or parallel cycles
available.

• The programming language to be used, based on a certain paradigm, is determined, and a
compiler is commonly available for the parallel platform. Many programming languages

Begin
For i:=0 to N­1
Known[i]:=(i=0) // only source vertex is known

For i:=0 to N­1
D[i]:= G[0,i] // initial distance of source to vertex

LastKnown := 0 // only source is known
KnownCount := 1

While KnownCount < N
MinVertex : = 0
For i:= 1 to N­1 // check the shorter route via last marked vertex

if Not Known[i]
D[i] := Min(D[i], D[LastKnown] + G[LastKnown, i])

MinVertex := MinV(MinVertex, i)
End For
// select next vertex to mark known
LastKnown := MinVertex
Known [LastKnown] := TRUE
KnownCount ++

End While
End

have parallel extensions for many parallel platforms [Pan96], as it is the case of C, which
can be extended for a particular parallel computer or use libraries to achieve process
communication [ST96].

• The main objective is to execute the tasks in the most time-efficient way.

Problem

An algorithm is composed of two or more simpler sub-algorithms, which can be divided into
further sub-algorithms, and so on, recursively growing as an ordered tree-like structure until
a level in which the sub-parts of the algorithm are the simplest possible. The order of the tree
structure (algorithm, sub-algorithms, sub-sub-algorithms, etc.) is a strict one. Nevertheless,
data can be divided into data pieces which are not strictly dependent, and thus, can be operated
on the same level in a more relaxed order. If the whole algorithm is performed serially, it
could be viewed as a chain of calls to the sub-algorithms, evaluated one level after another.
Generally, performance as execution time is the feature of interest. Thus, how do we solve the
problem (expressed as algorithm and data) in a cost-effective and realistic manner?

Forces

Considering the problem description and granularity and load balance as other elements of
parallel design [Fos94, CT92] the following forces should be considered:
• Perform a computation as a tree structure of ordered sub-computations. For example, in the

SSSP, each minimum distance for each vertex is calculated using the same operation
several times, but using different information per layer.

• Data can be only vertically shared among layers. In the SSSP example, data is distributed
through the tree structure, where autonomous operations are carried out.

• The same group of operations can be independently performed on different pieces of data.
In the SSSP example, the same operation is performed on each subgroup of data to obtain
its minimum distance from the lower layers. So, several distances can be obtained
simultaneously.

• Operations may be different in size and level of complexity. In the SSSP example,
operations are similar from one layer to the next, but the amount of data processed tends to
diminish.

• Dynamic creation and destruction of components is preferred over static, to achieve load
balance. For example, in the SSSP example, the creation of new components in lower
layers can be used to extend the solution to larger problems.

• Improvement in performance is achieved when execution time decreases. Our main
objective is to carry out the computation in the most time-efficient way. The question is:
how can the problem be broken down to optimise performance?

Solution

Use functional parallelism to execute the sub-algorithms, allowing the simultaneous existence
and execution of more than one instance of a layer component through time. Each one of
these instances can be composed of the simplest sub-algorithms. In a layered system, an

operation involves the execution of operations in several layers. These operations are usually
triggered by a call, and data is vertically shared among layers in the form of arguments for
these function calls. During the execution of operations in each layer, usually the higher layers
have to wait for a result from lower layers. However, if each layer is represented by more than
one component, they can be executed in parallel and service new requests. Therefore, at the
same time, several ordered sets of operations can be carried out by the same system. Several
computations can be overlapped in time [POSA96, Shaw95].

Structure

In this architectural pattern, different operations are carried out by conceptually-independent
entities, ordered in the shape of layers. Each layer, as an implicit different level of abstraction,
is composed of several components that perform the same operation. To communicate, layers
use calls, referring to each other as components of some composed structure. The same
computation is performed by different groups of functionally related components.
Components simultaneously exist and process during the execution time. An Object Diagram,
representing the network of components that follows the parallel layers structure is shown in
Figure 3.

Figure 3. Object Diagram of the Parallel Layers pattern.

Participants

• Layer component. The responsibilities of a layer component are to allow the creation of an
algorithmic tree structure. Hence, it has to provide a level of operation or functionality to
the layer component above, while delegating operations or functionalities to the two or
more layer components below. It also has to allow the flow of data and results, by receiving
data from the layer component above, distributing it to the layers components below,
receiving partial results from these components, and making a result available to the layer

:Layer 1

:Layer 2

:Layer 0

:Layer 1

:Layer 2 :Layer 2:Layer 2

component above. Each component is independent from the activity of other components.
This makes it easy to execute them in parallel.

Dynamics

As the parallel execution of layer components is allowed, a typical scenario is proposed to
describe its basic run-time behaviour. All layer components are active at the same time,
accepting function calls, operating, and returning or sending another function call to other
components in lower level layers. If a new function call arrives from the client, a free element
of the first layer takes it and starts a new computation.

As stated in the problem description, this pattern is used when it is necessary to perform
repeatedly a computation, as series of ordered operations. The scenario presented here takes
the simple case when two computations, namely Computation 1 and Computation 2, have to
be performed. Computation 1 requires the operations Op.A, which requires the evaluation of
Op.B, which needs the evaluation of Op.C. Computation 2 is less complex than
Computation 1, but requires to perform the same operations Op.A and Op.B. The parallel
execution is as follows (Figure 4):
• The Client calls a component Layer A1 to perform Computation 1. This component calls

to a component Layer B1, which similarly calls a component Layer C1. Both components
Layer A1 and Layer B1 remain blocked waiting to receive a return message from their
respective sub-layers. This is the same behaviour than the sequential version of the Layers
pattern [POSA96].

Figure 4. Interaction Diagram of the Parallel Layers pattern.

• Parallelism is introduced when the Client issues another call for Computation 2. This
cannot be serviced by Layer A1, Layer B1 and Layer C1. Another instance of the
component in Layer A, called Layer A2 - that either can be created dynamically or be
waiting for requests statically - receives it and calls another instance of Layer B, Layer B2,
to service this call. Due to the homogeneous nature of the components of each layer, every
component in a layer can perform exactly the same operation. That is precisely the
advantage of allowing them to operate in parallel. Therefore, any component in Layer B is
capable to serve calls from components in Layer A. As the components of a layer are not
exclusive resources, it is in general possible to have more than one instance to serve calls.
Coordination between components of different layers is based on a kind of client/server
schema. Finally, each component operates with the result of the return message. The main
idea is that all computations are performed in a shorter time.

Implementation

An architectural exploratory approach to design is described below, in which hardware-
independent features are considered early, and hardware-specific issues are delayed in the
implementation process. This method structures the implementation process of parallel
software based on four stages [OR98]. During the first two stages, attention is focused on
concurrency and scalability characteristics. In the last two stages, attention is aimed to shift
locality and other performance-related issues. Nevertheless, it is preferred to present each
stage as general considerations for design instead of providing details about precise
implementation. These implementation details are pointed more precisely in the form of
references to design patterns for concurrent, parallel, and distributed systems of several other
authors [Sch95, Sch98a, Sch98b, POSA00].

1. Partitioning. Initially, it is necessary to define the basic Layer pattern system which will
be used with parallel instances: the computation to be performed is decomposed into a set
of ordered operations, hierarchically defined and related, determining the number of
layers. Following this decomposition, the component representative of each layer can be
defined. For a concurrent execution, the number of components per-layer depends on the
number of requests. Several design patterns have been proposed to deal with layered
systems. Advice and guidelines to recognise and implement these systems can be found in
[POSA96, PLoP94]. Also, consider the patterns used to generate layers, like A Hierarchy
of Control Layers [AEM95] and the Layered Agent Pattern [KMJ96].

2. Communication. The communication required to coordinate the parallel execution of layer
components is determined by the services that each layer provides. Characteristics that
should be carefully considered are the type and size of the shared data to be passed as
arguments and return values, the interface for layer components, and the synchronous or
asynchronous coordination schema. The implementation of communication structures
between components depends on the features of the programming language used. Usually,
if the programming language has defined the communication structures (for instance,
function calls or remote procedure calls), the implementation is very simple. However, if
the language does not support communication between remote components, it is proposed

the construction of an extension in the form of a communication subsystem. Design
patterns can be used for this. Particularly, patterns like the Broker pattern [POSA96], the
Composite Messages pattern [SC95], the Service Configurator pattern [JS96, POSA00]
and the Visibility and Communication between Control Modules and Actions Triggered by
Events [AEM95] can help to define and implement the required communication structures.

3. Agglomeration. The hierarchical structure is evaluated with respect to the expected
performance. Usually, systems based on identical layer components present a good load-
balance. However, if necessary, using the conjecture-test approach, layer components can
be refined by combination or decomposition of operations, modifying their granularity to
improve performance or to reduce development costs.

4. Mapping. In the best case, each layer component executes simultaneously on a different
processor, if enough processors are available. Usually this is not the case. An approach
proposes to execute each hierarchy of layers on a processor, but if the number of requests
is large, some layers would have to block, keeping the client(s) waiting. Another mapping
proposal attempts to place every layer on a processor. This simplifies the restriction about
the number of requests, but if not all operations require all layers, this may overcharge
some processors, introducing load-balance problems. The most realistic approach seems to
be a combination of both, trying to maximise processor utilisation and minimise
communication costs. In general, mapping of layers to processors is specified static,
allowing an internal dynamic creation of new components to serve new requests. As a
"rule of thumb", a Parallel Layers pattern system will perform best on a shared-memory
machine, but a good performance can be achieved if it can be adapted to a distributed-
memory system with a fast communication network [Pan96, Pfis95].

Example Resolved

The potential parallelism for the SSSP is explained as follows. On each cycle, the current
distance to a given vertex must be compared to the distance to the vertex via the last known
vertex and the minimum recorded as the new distance. This calculation depends only on the
graph array G. Thus, the minimum distance for each vertex can be computed and marked. If
there are N processes, the algorithm would have a running time O(Nlog2N). N-1 cycles are still
required to compute the minimum of all vertices. However, each cycle will require one time
step to update the minimum for each vertex and O(log2N) time steps to compute the overall
minimum vertex.

To move to a parallel solution, we must determine two things:
1. the communications network topology that will be used, and
2. what information will be stored on the processors and what will be passed as messages.

Partitioning

Both communication and computation of a minimum can be done in O(log2N) time by using a
cubic array of processes. In such an arrangement, each process would compute its minimum

distance; then half of the processes would pick the minimum between its distance and that of a
neighbour in one dimension (Figure 5). Half of these processes would in turn select a
minimum, until the root process selects the global minimum distance vertex. Communication
and selecting the minimum can be done in O(log2N) time, assuring an overall O(Nlog2N)
performance.

Figure 5. Tree representation for the SSSP algorithm.

Communication

The communication for N processes has to consider how to distribute data over the network of
processes. This is done by reviewing the computations of a root and children processes, and
determining what data must be available for the computations.

The root process P0 calculates which of the two vertices has the shorter unknown distance. To
do so, it must have available which vertices have already had their distances marked (the array
Known), and the distance and id of the vertices being compared.

The children processes, on the other hand, must compare their current vertex distance to the
distance between the last known vertex and themselves. Thus, they must have available the
original graph G and the distance and id of the last known vertex. In addition, some children
processes will be calculating the minimum between two vertices, so they will also need to
know which of the vertices are known.

The basic data that needs to be communicated between processes is the id of the vertex and its
most recent distance. This data will be used to calculate the minimum distance vertex and to
announce which vertex has been marked as known. Thus, a message is a two-element array,
one being a vertex id, the second a distance.

Since the message marking a vertex is distributed to all vertices, each process can keep track
of which vertices are known. Thus each should locally store and update the array Known.
Likewise, the graph G, which is not changed during the computation, must be distributed to all
processes and stored locally before computation begins.

P4P0 P6P2 P5P1 P7P3

P0 P2 P1 P3

P0 P1

P0

Finally, the function MinV would no longer have access to the array D to look up the distances
of the vertices being compared. The parameters must be changed so that the distances of the
vertices being compared are passed as well as the vertex identifiers.

Agglomeration and Mapping

If a 3D-cube is used for the computations (Figure 6), the code for synchronising and
communicating between the root process and the remaining processes would be as the one
shown in Figures 7 and 8, respectively.

Figure 6. A 3D-cube.

Figure 7. root process (Process 0).

Process 0 (the root process)
i := 1
While i < N

// receive distances from 3 neighbours
MinVertex := 0
receive vertex id from z dimension
MinVertex := MinV(MinVertex,Zvertex)
receive vertex id from y dimension
MinVertex := MinV(MinVertex,Yvertex)
receive vertex id from x dimension
MinVertex := MinV(MinVertex,Xvertex)
Known[MinVertex] := TRUE // Update Known array
LastKnown := MinVertex
distribute LastKnown out x, y and z // Inform neighbours of the result
i++

End While
End Process 0

P0 P1

P2 P3

P4

P6 P7

P5

Figure 8. The children processes (Process k).

Synchronisation is achieved by the links between processes. Thus process 3 cannot compute
the minimum distance vertex between itself and process 7 until process 7 sends its distance.
Once computed, it sends the distance to process 1, which in turn waits until this message is
received to compute the minimum between processes 3 and 1.

Known uses

• The homomorphic skeletons approach, developed from the Bird-Meertens formalism and
based on data types, can be considered as an example of the Parallel Layers pattern:
individual computations and communications are executed by replacing functions at
different levels of abstraction [ST96].

• Tree structure operations like search trees, where a search process is created for each node.
Starting from the root node of the tree, each process evaluates its associated node, and if it

Process k, 1<=k<N
// The remaining processes

i := 1
While i < N

// find overall unknown minimum distance vertex
LocalMinVertex := k
if k < 4 then begin

 // processes 1, 2, and 3 receive and compute min
receive Zvertex from z dimension
LocalMinVertex := MinV(LocalMinVertex,Zvertex)

else
 // processes 4, 5, 6, and 7 send out their vertices

send LocalMinVertex out z dimension
if k < 4 then

 // processes 4, 5, 6, and 7 do nothing
if k = 1 then begin

 // process 1 receives and computes minimum
receive Yvertex from y dimension
LocalMinVertex := MinV(LocalMinVertex,Yvertex)

else
 // processes 2 and 3 send out their vertices

send LocalMinVertex out y
if k = 1 then

 // process 1 sends its local min to process 0
send LocalMinVertex out x

// now receive overall minimum vertex LastKnown from Process 0
if k = 1 then begin

 // process 1 receives from 0, distributes to 3
receive LastKnown in x dimension
send LastKnown in y dimension

else
if k < 4 then

 // processes 2 and 3 receive from 0 and 1, distribute to 4 and 5
receive LastKnown in y dimension
send LastKnown in z dimension

else
 // processes 4, 5, 6, and 7 receive from 0, 1, 2, and 3

receive LastKnown in z dimension
D[k] := Min(D[k],D[LastKnown]+G[LastKnown,k]”)”

 // now update Distances
i++

End While
End Process k

does not represent a solution, recursively creates a new search layer, composed of processes
that evaluate each node of the tree. Processes are active simultaneously, expanding the
search until they find a solution in a node, report it and terminate [Fos94, NHST94].

• The Gaussian elimination method, used to solve systems of linear equations, is a numerical
problem that is solved using a Parallel Layers structure. The original system of equations,
expressed as a matrix, is reduced to a triangular form by performing linear operations on the
elements of each row as a layer. Once the triangular equivalent of the matrix is available,
other arithmetic operations must be performed by each layer to obtain the solution of each
linear equation [Fos94].

Consequences

Benefits

• The Parallel Layers pattern, as the original Layers pattern, is based on increasing levels of
complexity. This allows the partitioning of the computation of a complex problem into a
sequence of incremental, simple operations [SG96]. Allowing each layer to be presented as
multiple components executing in parallel allows to perform the computation several times,
enhancing performance.

• Changes in one layer do not propagate across the whole system, as each layer interacts at
most with only the layers above and below, that can be affected. Furthermore, standardising
the interfaces between layers usually confines the effect of changes exclusively to the layer
that is changed. [POSA96, SG96].

• Layers support reuse. If a layer represents a well-defined operation, and communicates via
a standardised interface, it can be used interchangeably in multiple contexts. A layer can be
replaced by a semantically equivalent layer without great programming effort [POSA96,
SG96].

• Granularity depends on the level of complexity of the operation that the layer performs. As
the level of complexity decreases, the size of the components diminishes as well.

• Due to several instances of the same computation are executed independently on different
data, synchronisation issues are restricted to the communications within just one
computation.

• Relative performance depends only on the level of complexity of the operations to be
computed, since all components are active [Pan96].

Liabilities

• Not every system computation can be efficiently structured as layers. Considerations of
performance may require a strong coupling between high-level functions and their lower-
level implementations. Load balance among layers is also a difficult issue for performance
[SG96, Pan96].

• Many times, a layered system is not as efficient as a structure of communicating
components. If services in upper layers rely heavily on the lowest layers, all data must be
transferred through the system. Also, if lower layers perform excessive or duplicate work,

there is a negative influence on the performance. In certain cases, it is possible to consider a
Pipe and Filter architecture instead [POSA96].

• If an application is developed as layers, a lot of effort must be expended in trying to
establish the right levels of complexity, and thus, the correct granularity of different layers.
Too few layers do not exploit the potential parallelism, but too many introduce unnecessary
communications. The granularity and operation of layers is difficult, but related with the
performance quality of the system [POSA96, SG96, NHST94].

• If the level of complexity of the layers is not correct, problems can arise when the
behaviour of a layer is modified. If substantial work is required on many layers to
incorporate an apparently local modification, the use of Layers can be a disadvantage
[POSA96].

Related patterns

The Parallel Layers pattern extends the Layers pattern [POSA96] and the Layers style
[Shaw95, SG96] for parallel systems. Several other related patterns are found in [PLoP94];
more precisely, A Hierarchy of Control Layers pattern, Actions Triggered by Events pattern,
and those under the generic name of Layered Service Composition pattern. The Divide and
Conquer pattern [MSM05] describes a very similar structural solution to the Parallel Layers
pattern. However, its context and problem descriptions do not cope with the basic idea that, in
order to guide the use of parallel programming, it is necessary to analyse how to divide the
algorithm and/or the data to find a suitable partition, and hence, link it with a programming
structure that allows for such a division.

3. Summary

The goal of the present work is to provide software designers and engineers with an overview
of the Parallel Layers pattern as a description of a common structure used for parallel software
systems. Its application depends on the feasibility of the algorithm to be expressed in the form
of a tree, which maps into the layers structure. Also, such an application is based on allowing
data to be divided into pieces which are operated without a dependence among themselves.
The architectural pattern described here is directly related with several developments in the
field of algorithmic analysis, where it is proven its efficiency when dealing with fixed size
problems. This pattern can be also linked with other current pattern developments for
concurrent, parallel and distributed systems. Work on patterns that support the design and
implementation of such systems has been addressed previously by several authors [Sch95,
Sch98a, Sch98b, POSA00].

4. Acknowledgements

The author wishes to thank Joseph W. Yoder, my shepherd, for his important suggestions and
advises for the improvement of this paper. This paper has been developed as part of the
Subproject EN101603 of the Support Program to Institutional Projects for Teaching
Improvement (PAPIME), supported by DGAPA-UNAM.

5. References

[AEM95]Aarsten, A., Gabriele Elia, G., and Giuseppe Menga, G. G++: A Pattern Language for
the Object Oriented Design of Concurrent and Distributed Information Systems, with
Applications to Computer Integrated Manufacturing. Department of Automatica e
Informatica, Politecnico de Torino. In J. Coplien and D. Schmidt (eds.) Pattern Languages of
Program Design. Reading, MA: Addison-Wesley, 1995.

[CG88] Nicholas Carriero and David Gelernter. How to Write Parallel Programs. A Guide to the
Perplexed. Yale University, Department of Computer Science, New Heaven, Connecticut.
May 1988.

[CM88] K. Mani Chandy and J. Misra. Parallel Programming Design. Addison-Wesley, New
York, 1988.

[CT92] K. Mani Chandy and Stephen Taylor. An Introduction to Parallel Programming. Jones
and Bartlett Publishers, Inc., Boston, 1992.

[Fos94] Ian Foster. Designing and Building Parallel Programs, Concepts and Tools for Parallel
Software Engineering. Addison-Wesley Publishing Company, 1994.

[JS96] Prashant Jain and Douglas C. Schmidt. Service Configurator. A Pattern for
DynamicConfiguration and Reconfiguration of Communication Services. Third Annual
Pattern Languages of Programming Conference, Allerton Park, Illinois. September 1996.

[MSM05] Timothy. G. Mattson, Beverly A. Sanders, and Berna L. Massingill. A Pattern
Language for Parallel Programming. Addison Wesley Software Patterns Series, 2005.

[NHST94] Christopher H. Nevison, Daniel C. Hyde, G. Michael Schneider, Paul T. Tymann.
Laboratories for Parallel Computing. Jones and Bartlett Publishers, 1994.

[OR98] Jorge L. Ortega-Arjona and Graham Roberts. Architectural Patterns for Parallel
Programming. Proceedings of the 3rd European Conference on Pattern Languages of
Programming and Computing, EuroPloP'98. Universitätsverlag Konstantz GmbH, 1999.

[OR00] Jorge L. Ortega-Arjona. The Communicating Sequential Elements Pattern. Proceedings
of the 7th Annual Conference on Pattern Languages of Programming, PloP'98. Washigton
University Technical Report wucs-00 29, 2000.

[OR03] Jorge L. Ortega-Arjona. The Shared Resource Pattern. Proceedings of the 10th Annual
Conference on Pattern Languages of Programming, PloP 2003. Washigton University
Technical Report wucs-00 29, 2000.

[OR05] Jorge L. Ortega-Arjona. The Pipes and Filters Pattern. Proceedings of the 10th European
Conference on Pattern Languages of Programming, EuroPloP 2005. Universitätsverlag
Konstantz GmbH, 2005.

[Pan96] Cherri M. Pancake. Is Parallelism for You? Oregon State University. Originally
published in Computational Science and Engineering, Vol. 3, No. 2. Summer, 1996.

[Pfis95] Gregory F. Pfister. In Search of Clusters. The Coming Battle in Lowly Parallel
Computing. Prentice Hall Inc. 1995.

[PLoP94] James O. Coplien and Douglas C. Schmidt (editors). Patterns Languages of
Programming. Addison-Wesley, 1995.

[POSA96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerland, Michael Stal.
Pattern-Oriented Software Architecture. John Wiley & Sons, Ltd., 1996.

[POSA00] Douglas Schmidt, Michael Stal, Hans Rohnert, Frank Buschmann. Pattern-Oriented
Software Architecture, Volume 2. Patterns for Concurrent and Networked Objects. John Wiley
& Sons, Ltd., 2000.

[SC95] Aamond Sane and Roy Campbell. Composite Messages: A Structural Pattern for
Communication Between Components. OOPSLA'95, Workshop on Design Patterns for
Concurrent, Parallel and Distributed Object-Oriented Systems. October 1995.

[Sch95] Douglas Schmidt. Accepted Patterns Papers. OOPSLA'95 Workshop on Design Patterns
for Concurrent, Parallel and Distributed Object-Oriented Systems.
http://www.cs.wustl.edu/~schmidt/OOPSLA-95/html/papers.html. October, 1995.

[Sch98a] Douglas Schmidt. Design Patterns for Concurrent, Parallel and Distributed Systems.
http://www.cs.wustl.edu/~schmidt/patterns-ace.html. January, 1998.

[Sch98b] Douglas Schmidt. Other Pattern URL's. Information on Concurrent, Parallel and
Distributed Patterns. http://www.cs.wustl.edu/~schmidt/patterns-info.html. January, 1998.

[Shaw95] Mary Shaw. Patterns for Software Architectures. Carnegie Mellon University. In J.
Coplien and D. Schmidt (eds.) Pattern Languages of Program Design. Reading, MA: Addison-
Wesley, 1995.

[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall Publishing, 1996.

[ST96] David B. Skillicorn and Domenico Talia. Models and Languages for Parallel
Computation. Computing and Information Science, Queen's University and Universita della
Calabria. October 1996.

