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Abstract

This paper introduces an approach to describing and seleding architedural patterns for parallel programming. The
approach uses the requirements of the order of data and the cmmputations of the problem, along with the nature of their
processgng components, to make seledions between dfferent architedural patterns.

1. Introduction

Parallel processng is the division of a problem, presented as a data structure or a set of adions, among multiple
processng components that operate simultaneously. The expeded result is a more dficient completion of the
solution to the problem. Its main advantage is the aility to handle tasks of a scde that would be unredistic or
not cost-effedive for other systems[CG88, Fos94, ST96, Pan96].

The power of paralelism relies on issues concerned with partitioning a big problem in order to ded with
complexity. The partitioning is necessary to divide such big problem into smaller sub-problems that are more
easily understood, and may be worked on separately, on a more comfortable scde. This is espedally important
in the case of parallel systems, where partiti oning enables oftware components to be not only creaed separately
but also executed simultaneously in parall€l.

However, in pradice parall el programming is hard, involving a stegp leaning curve. Due to the charaderistics of
parale systems, finding a starting point to initiate the design can sometimes be more difficult than compared
with sequential programming. Results may also be more discouraging: the programmer’s eff orts must focus on
the design and implementation in new parallel ways, which may end up with a parallel program version that
exeautes dower than a smpler previous ®quentia one. Furthermore, whether “parallel computer” refers to a
high performance platform or a duster of workstations, its runtime environment is inherently unstable and
unpredictable, making it more difficult to dedde which organisational structure can be used with less effort and
risk of failure. The Architecural Patterns for Parallel Programming presented here represent an attempt to help
with theinitial selection of the overall structure of a parallel software program.

2. Architectural patterns

Architedural patterns are fundamental organisational descriptions of the ammmon top-level structure observed in
agroup of software systems. They can be viewed as templates, expressing and spedfying structural properties of
their subsystems, and the responsibiliti es and relationships between them. The seledion of an architecural
pattern is considered to be afundamental dedsion during the design of the overall structure of a software system
[POSA96, Shaw9s).

The initial attradion to architedural patterns is the promise of minimising the dfeds of imminent changes of
requirements on the overall system structure. As they represent a means to cgpture and expressexperiencein the
design and development process of software, their use is expeded to be beneficial during ealy stages of the
software life cycle [ Shaw95)].

The patterns here share aformal structure, containing a name, a summary, examples, a problem statement
(including a description of its forces), a solution statement (covering descriptions of its dructure, participants,
basic dynamics and implementation steps), consegquences (describing benefits and liabiliti es), known uses and
related patterns. These dements provide auniform template for browsing pattern descriptions contained in
severa pattern systems [PLoP94, PLoP95, GHJV 95, POSA96], making it easy to look for and find information
about when and how to use eab pattern.



3. Classification of Architectural Patternsfor Parallel Programming

Architedural patterns for parallel programming can be dassfied following the dharaderistics of parallel systems
as the dassification criteria. Pancake [Pan96], Foster [Fos94], and Carriero and Gelernter [CG88] have studied
and proposed classficaions acording to the charaderistics of parallel applicaions, and their relation with
performance. All of them agreethat in parallel programming, the nature of the problem to be solved is tightly
related to the structure and behaviour of the program that solvesit.

Architedural patterns for parallel programming are defined and classified acording to the requirements of order
of data and operations, and the nature of their processng components.

Requirements of order dictate the way in which parallel computation has to be performed, and therefore, impad
on the software design. Following this, it is passble to consider that most parallel applications fal into one of
threeforms of parall elism: functiond parallelism [Fos94], domain parallelism [Fos94], and activity parallelism
[CG88], which depend on the requirements of order of operations and data in the problem.

e Functiond parallelism can be found in problems where a @mputation can be described in terms of a series
of time-step ordered operations, on a series of ordered values or data with predictable organization and
interdependencies. As ead step represents a change of the input for value or effed over time, a high amount
of communication between components in the solution, in the form of a flow of data or operations, should
be mnsidered. Conceptualy, a single data value or transformation is performed repeaedly [CG88, Fos94,
Pan96).

e Domain paall€elism involves problems in which a set of aimost independent operations is to be performed
on ordered locd data Becaise eab component in the solution is expeded to exeaute a relatively
autonomous computation, the amount of communication between them can be variable, following fixed and
predictable paths that can be represented as a network. It is difficult to conceive the computation as a flow of
data anong processng stages or sequential stepsin an algorithm [CG88, Fos94, Pan96].

e Activity parallelism involves problems that apply independent computations as ts of non-deterministic
transformations, perhaps repeaedly, on values of an ordered or unordered data structure. Activity
parall elism can be considered between the extremes of allowing all data to be ésorbed by the components
or al processesto be divided into components. Many components hare accss to pieces of a data structure.
As ead component performs independent computations, communication between processng componentsis
not required. However, the amount of communication is not zero. Communicaion is required between a
component that controls the acces of components to the data structure and the processng components
[CG88, Pan9f].

The nature of processng components is another classificaion criteria that can be used for parale systems.
Generally, components of parallel systems perform coordination and processng adivities. Considering only the
processng charaderistic of the cmponents, paralel systems are dassified as homogenous g/stems and
heterogeneous s/stems, acording to the same or different processng reture of their comporents. This nature
expases properties that have tangible effeds on their number in the system and the kind of communications
among them.

* Homogeneous g/stems are based on identicd components interading in acordance with simple sets of
behavioural rules. They represent instances with the same behaviour. Individually, any component can be
swapped with another without noticeale change in the operation of the system. Usually, homogeneous
systems have alarge number of components, which communicate using data exchange operations.

e Heterogeneous gstems are based on different components with spedalised behavioural rules and relations.
Basicdly, the operation of the system relies on the differences between components, and therefore, no
component can be swapped with another. In general, heterogeneous systems are composed of fewer
components than homogeneous g/stems, and communicae using function cals.



Based on these dassificaion criteria, this paper presents five achitedural patterns commonly used in parallel
systems programming:

e The Pipes and Filters pattern is an extension of the original Pipes and Filters pattern [POSA96, Shaw95,
SG96] for paralel systems, using a functional parall elism approach where wmputations follow a predse
order of operations on ordered data. Commonly, ead comporent represents a different step of the
computation and datais passed from one computation stage to another along the whole structure.

e The Parallél Hierarchies pattern extends the original approach of the Layers Pattern [POSA96, Shaw95,
SGIOe] for parallel systems, considering a functional parall elism in which the order of operations on data is
the important fegure. Paralelism is introduced when two or more hierarchies of layers are ale to run
simultaneoudly, performing the same computation.

e The Comrmunicating Squential Elements pattern is used when the design problem at hand can be
understood in terms of domain parall elism. The same operations are performed simultaneously on different
pieces of ordered data [Fos94, CT92]. Operations in each component depend on partial results in neighbour
components. Usually, this pattern is presented as a network or logicd structure, conceived from the ordered
data.

e The Manager-Workers pattern can be considered as a variant of the Master-Save pattern [POSA96] for
paralel systems, introducing an adivity parallelism where the same operations are performed on ordered
data. Each component performs the same operations, independent of the processng adivity of other
components. Different pieces of data ae processd simultaneously. Preserving the order of data is the
important feaure.

e The Shared Resource pattern is a spedalisation variant of the Blackboard pattern [POSA96] introducing
adivity parallelism charaderistics, where different computations are performed simultaneously, without a
prescribed order, on ordered data.

Functional Domain Activity
Parall elism Parall elism Parall elism
Heterogeneous PipesandFilters Shaed Resource
processng
Homogeneous Parallel Hierarchies Comrrunicating Manager-Workers
processng Seguential Elements

Table 1. Architedura patterns classficaion.

4. Selection of Architectural Patternsfor Parallel Programming

The seledion of an architedural pattern for parallel programming is guided mainly by the properties used for
classfying them. However, it isimportant to notice that a particular architecural pattern, or its combination with
others, is not a mmplete parallel software achitedure. Its objedive is just to provide astable structure for a
software system, as afirst step on the design and implementation of parallel software.

Based on the dasdfication schema and the pattern descriptions [POSA96, GHIV95], a procedure for seleding
architedural pattern for parallel programming can be spedfied as follows:

1. Analyse the design problem and oliain its gedfication. Analyse and spedfy, as predsely as possble, the
problem in terms of its charaderistics of order of data axd computations, the nature of its processng
components, and performance requirements. It is important to also consider the context conditions about the
chosen paralld platform and language (see sedion 5) that may influence the design. This gage is crucia to
set up most of the basic forcesto ded with during the design.

2. Sdled the category of parallelism. In acordance with the problem spedfication, seled the cdegory of
parall elism - functional, domain or adivity parall elism - that better describesit.



3. Sded the category of nature of processng comporents. Seled the nature of the process distribution -
homogeneous or heterogeneous - among components that better describes the problem spedficaion. The
nature of processdistribution indiredly refleds charaderistics about the number of processng components
and the amount and kind of communicdions between them in the solution.

4. Compare the problem spedfication with the Problem sedion. The cdegories of parallelism and nature of
processng components can be smply used to guide the seledion of an architedural pattern. In order to
verify that the seleded pattern copes with the problem at hand, compare the problem spedfication with the
Problem sedion of the seleded pettern. More spedfic information and knowledge @out the problem to be
solved is required. Unlesstroubles were encountered up to here, the achitedural pattern seledion can be
considered as completed. The design of the parallel software system continues using the seleded
architedural pattern Sdution sedion as a starting point. On the @ntrary, if the achitedural pattern seleced
does not satisfadorily match aspeds of the problem spedfication, it is passble to try to seled an alternative
pattern, as foll ows.

5. Sded an dternative architecural pattern. If the seleded pattern does not match the problem spedfication at
hand, try to seled another pattern that aternatively may provide a better approach when it is modified,
spedalised ar combined with others. Cheding the Examples, Known Uses and Related Patterns sedions of
the other pattern description may be helpful for this. If an aternative pattern is slected, return to the previous
step to verify it copes with the problem spedfication.

If the previous deps do not provide aresult, even after trying some dternative patterns, stop searching. The
architedural patterns here do not provide apattern that can help to solve this particular problem. It is possble to
look at other more general pattern languages or systems [GHJIV95, PLoP94, PLoP95, POSA96] to seeif they
contain a pattern that can be used. Or the dternative is trying to solve the design problem without using patterns.

5. Architectural Patternsfor Parallel Programming

Parallel programming is charaderised by a growing set of paralé architedures, paradigms and programming
languages. This stuation makes difficult to propcse just one gproach containing all the details to design and
implement parall el software systems. The achitectural patterns propcsed here ae proposed as an effort to help a
programmer to dedde astarting point when designing a parallel program. Thus, al the patterns contained here
share simil arities in their context and implementation.

Context and I mplementation in general
Context in general

Sart the design a software program for a paallel system, using acertain programmning language for certain
parallel hardware. Consider the foll owing context assumptions:

e The problem involves tasks of a scae that would be unredistic or not cost-eff edive for other systems to
handle and lends itself to be solved using parall elism.

e The hardware platform or machine to be used is fixed, offering a reasonably good fit to the parallelism
found in the problem.

e Thelanguage that will be used, based on a cetain programming paradigm, is already determined, and a
compiler version is available for the parall el platform.

In genera, the existence of an available parallel platform and a programming language ae cnsidered as a
basic context condition when starting the design and implementation of a parallel program. They are
determinant of the performance that can be adieved, and also influence the design of software. Once fixed,
the dedsion to use one achitedural organisation or another relays mainly on the charaderistics of the
problem. This work focuses more predsely on these charaderistics. Each pattern represents a form to
identify how operations can be performed in parall el and/or how data can be operated simultaneously.



I mplementation in general

Also, as an effed of the mntext, the implementation of al these patterns share the same steps, intended to
describe an architedural exploratory approach to design, in which hardware-independent feaures are ealy
considered, and hardware-spedfic issues are delayed in the implementation process This method structures
the implementation processof parallel software based on four stages [Fos94, CSG97]:

e Partitioning. The cmputation to be performed and/or the data operated are decompaosed into operations
and/or data pieces, defining posdble cmmponents for the parallel program. During this stage, pradicd
hardware-dependent issues are ignored. The dtention is focussed on regnising the oppatunities for
parale exeadtion. In general, architecural pattern components can be implemented using design patterns.

e Comnunication. The communication to coordinate processexeaution is determined, defining appropriate
communicaion structures between processng components. In general, architedural communication
structures can be dso based on design patterns.

e Agdomeration. The components and communicaion structures recgnised in the previous geps are
evaluated in acordance with performance requirements. In the cae of paralel systems, usualy a
conjedure-test approach is used, in which components are recombined severa times into larger
components, aiming to maximise procesor utilisation and reduce mmmunication costs.

e Mappng. Components are assgned to red processors, trying to satisfy the atempts of the agglomeration
stage. Mapping can be defined static or dynamic, depending diredly on hardware issues.

The gproach presented here is intended to ded with the implementation issues from an architecural point of
view. During the first two stages, attention is focused on concurrency and scdability charaderistics. In the
last two stages, attention is aimed to shift locdity and other performance-related issues. Nevertheless it is
preferred to present ead stage in the form of general design considerations instead of provide detail s about
predse implementation of participants. These implementation details are pointed more predsely in the form
of references to design patterns for concurrent, paralel and dstributed systems of several other authors
[Sch95, Sch98a, Schosh).

Further reference dout feaures of parallel hardware platforms and parall el languages can be found in [CSG97,

Fos94, Para98, Perr92, Pfis95, Phil95, ST96]. Also, good advice and guidelines about platform and language
seledion for performance, related with speed-up and scdabili ty, can be found in [Pan96, PB90].

Pipes and Filters

The Pipes and Filters pattern extends the Pipes and Filters pattern [POSA96, Shaw95, SG96] with aspeds of
functional parall elism. Each parallel component performs a different step of the computation, following a predse
order of operations on ordered data that is passed from one computation stage to another as a flow through the
structure.

Examples
A Nonprogramming Example

Imagine the ssembly line of an automobil e factory. There ae lots of tasks to manufadure a ca, but consider
only some very general tasks: 1) frame and power chain installation, 2) badlting the body on the frame, 3)
mount the engine, and 4) put on the seas and the wheels. Based on this description of tasks, an assembly line
is smply a pipeline of tasks, in which the procedure to manufadure a ca requires four tasks that can be
overlapped in time: while seas and wheds are put on for a ca, the engine is being mounted on another, etc.
Idedly, consider that each task is designed so that ead completes in a cycle of time. After four cycles, seas
and wheds are install ed for the first car, the engine is mounted on the second car, the body of the third car is
bolted, and the chasds of the fourth car is built. However, from the fifth cycle onwards, the manufadure of a
new car requires only a cycle of time to be completed, exploiting the parallelism inherent in the ordered
tasks.



A Programming Example

In image processng, rendering is a jargon word that has come to mean “the wlledion of operations
necessary to projed a view of an objed or a scene onto a view surface” [Watt93]. The best way to bresk
down the overall rendering processis to consider eat objed as a different coordinate space in which
independent operations can be caried out simultaneously. The input to a polygona renderer is a list of
polygons and the output is a @lour for ead pixel on the screen. To build up, for instance, a 3D scene, four
general tasks are to be performed per objed (Figure 1).

Locd coordinate World coordinate . 3D screen Display
space space View space space space
Compose scene Hidden surface
Object Define view Cull Removal
definiion [~  refeence  [[®| Clipto3d [P Resterision [
Definelighting View volume Shading

Figure 1. A 3D rendering pipeline.

As in the non-programming example, each one of the tasks can be overlapped in time. In common
applications for the film and video industry, the time required to render scene usually can be deaeased. For
example, the rendering of a spedal effed scene of 10 seconds using a standard resolution of 2048x1536
pixels takes up to 130 hours of processng time on a single high-end Madntosh or PC platform. Using a
paral el approach, with a 16 node CY CORE (a Parsytec parall el machine) this processcan be reduced to 105
hours [HPCN98].

Problem

The application of a series of ordered bu independent computationsis required, perhaps as a series of time-
step operations, on ordered daa. Conceptualy, a single data objed is transformed. If the computations were
caried out serially, the output data set of the first operation would serve @ input to the operations during the
next step, whose output would in turn serve & input to the subsequent step-operations. Generaly,
performance & exeaution timeis the feaure of interest.

Forces

Acoording to the problem description and considering granularity and load balance & other important forces
for parallel software design [Fos94, CT92] the foll owing forces should be considered for a parall el version of
the Pipes andFilters pattern:

e Maintain the predse order of operations.

* Preservethe order of shared data anong all operations.

« Consider the introduction of parall elism, in which different step-operations can processdifferent pieces of
data & the sametime.

« Distribute processinto similar amounts among all step-operation.

« Improvement in performanceis achieved when exeaution time deaeases.

Solution

Parallelismis represented by overlapping operations through time. The operations produce data output that
depends on precading operations on its data input, as incrementally ordered steps. Data from different steps
are used to generate change of the input over time. The first set of components begins to compute & on as
the first data ae available, during the first time-step. When its computation is finished, the result data is
pas=d to another set of components in the second time-step, following the order of the dgorithm. Then,



whil e this computation takes placeon the data, the first set of components is freeto accet more new data.
The results from the second time-step components can also be passed forward to be operated on by a set of
components in a third-step, whil e now the first time-step can accet more new data, and the seaond time-step
operates on the second group of data, and so forth [POSA96, CG88, Shaw95, Pan96).

Structure
This pattern is cdled Pipes and Filters snce data is passed as a flow from one computation stage to another
along a pipeline of different processng elements. The key fedure is that data results are passed just one way

through the structure. The complete parallel execution incrementally buil ds up, when data becmes avail able
at ead stage. Different components smultaneously exist and processduring the exeaution time (Figure 2).

Thread of
Exeaition

D

Data flow

Data flow
(Pipes)

Figure 2. Pipes and Filters pattern.

Participarts

* Filter. The responsibiliti es of a filter component are to generate data or get input data from a pipe, to
perform an operation onitslocd data, and to send output result datato one or several pipes.

* Pipe. The responsibiliti es of a pipe mmponent are to transfer data between filters, sometimes to buffer
data or to synchronise adivity between neighbouring filters.

Dynamics

Due to the parall el execution of the cmponents of the pattern, the following typicd scenario is proposed to
describe its basic run-time behaviour. As al filters and pipes are adive simultaneously, they accept data,
operate on it in the case of filters, and send it to the next step. Pipes synchronise the adivity between filters.
Thisapproach is based on the dynamic behaviour exposed by the Pipes andFilters pattern in [POSA96].

In this cenario (figure 3), the foll owing steps are foll owed:

* Pipe A receves data from a Data Source or another previous filter, synchronising and transferring it to
the Filter N.

* Filter N receves the package of data, performs operation Op.n on it, and delivers the results to Pipe B.
At the same time, new data arives to the Pipe A, which delivers it as ©on as it can synchronise with
Filter N. Pipe B synchronises and transfers the data to Filter M.

* Filter M recevesthe data, performs Op.mon it, and deliversit to Pipe C, which sendsit to the next filter
or Data Sink. Simultaneoudly, Filter N has recaved the new data, performed Op.n on it, and
synchronising with Pipe B to deliver it.

e The previous geps are repeaed over and over until no further data is recaved from the previous Data
Sourceor filter.



Pipe A Filter N PipeB Filter M PipeC

b [ [ [

bag}]
oag))
(1 bl , Gl

Op.n

Op.m

[ 1 load 4 M1 e

T T T

Figure 3. Scenario of Pipes and filters pattern.

I mplementation

The implementation processis based on the four stages mentioned above in the Context and Implementation
in general sedions.

Partitioning. The cmputation that isto be performed is decomposed, attending the ordered operations to
be performed into a sequence of different operation stages, in which orderly data is recéved, operated on
and passed to the next stage. Attention focuses on recgnising oppatunities for simultaneous execution
between subsequent operations, to assgn and define potential filter components. Initialy, filter
components are defined by gathering operation stages, considering charaderistics of granularity and load-
balance As ead stage represents a transformational relation between input/output data, filters can be
composed of a single processng element (for instance, a process task, function, objed, etc.) or a
subsystem of processng elements. Design patterns [GHJIV 95, POSA96, PLoP94, PLoP95] can be useful
to implement the latter ones; particularly, consider the Active Objed pattern [LS95] and the “ Ubiquitous
Agent” pattern [JP96].

Comnunication. The communication required to coordinate the simultaneous execution of stages is
determined, considering communication structures and procedures to define the pipe @mponents.
Common charaderistics that should be caefully considered are the type and size of the data to be pas<sed,
and the synchronous or asynchronous coordination schema, trying to reduce the @sts of communication
and synchronisation. Usually, a synchronous coordination is commonly used in Pipes and Filters pattern
systems. The implementation of pipe mmponents obeys to feaures of the programming language used.
If the programming language has defined the necessary communication structures for the size and type of
the data, a pipe in general can be usualy defined in terms of a single communicaing element (for
instance, a process a stream, a channel, etc.). However, in case that more complexity in data size and
typeisrequired, a pipe cmponent can be implemented as a subsystem of elements, using design patterns.
Espedally, patterns like the Broker pattern [POSA96], the Composite Messages pattern [SC95], and those
defined in [CMP95] can help to define and implement pipe cmponents.

Agglomeration. The filter and pipe structures defined in the previous gages should be evaluated with
resped to the performance requirements and implementation costs. Once initia filters are defined, pipes
are onsidered simply to allow data flow between filters. If an initial proposed agglomeration does not
acomplish the expeded performance, the mnjedure-test approach can be used to propose another



agglomeration schema. Recombining the operations by repladng pipes between them nodifies the
granularity and load balance, aiming to balance the workload and to reduce @mmunication costs.

e Mappng. Each component is assigned to a processor, attempting to maximise processor utilisation and
minimise ommunicaion costs. Usually, mapping is pedfied as datic for Pipes and Filters pattern
systems. As a “rule of thumb”, these systems may have agood performance when implemented using
shared-memory machines, or can be aapted to distributed-memory systems, if the communication
network is fast enough to pipe data sets from one filter to the next [Pan96, Pfis95].

Consequences
Benefits

* The use of Pipes and Filters pattern all ows the description of a computation in terms of the compasition
of ordered operations of its component filters. Every operation can be understood then in terms of
input/output relations of ordered data [SG96].

« Systems based on the Pipes and Filters pattern suppart in a natural form parallel execution. Eac filter is
considered a separate operation that potentially can be exeauted simultaneously with other filters [SG96].

e |If processis distributed into similar amounts, Pipes and Filters systems are relatively easy to enhance and
maintain by filter exchange and recombination. For parallel systems, reuse is enhanced asfiltersand pipes
are omposed as adive mmponents. Flexibility is introduced by the aldition of new filters, and
replacament of old filters by improved ones. Asfilters and pipes present a simple interface it isrelatively
easy to exchange and recombine them within the same achitecture [POSA96, SG96].

« The performance of Pipes and Filters architedures depends mostly on the number of steps to be
computed. Once dl components are adive, the processng efficiency is constant [POSA96, NHST94].

* Pipes and Filters gructures permit certain spedalised analysis methods relevant to parallel systems, such
asthroughput and deadlock analysis [SG96].

Liabilities

e The use of Pipes and filters introduces potential exeaution problems if they are not properly load-
balanced; this is, if the stages do not all present a similar execution speed. As faster stages will finish
processng before slower ones, the parallel system will be & fast asits dowest stage. A common solution
to this problem is to execute slow stages on faster processors, but load balancing can still be quite
difficult. Another solution is to modify the mapping of software cmponents to hardware procesors, and
test ead stage to get asimilar speed. If it is not possble to load-balance the work, performance that could
potentially be obtained from a Pipes and Filters system may not be worth the programming effort [ Pan96,
NHST94].

e Synchronisation is another potential problem of Pipes and Filters systems related with load balance If
eath stage caises delay during execution, this delay is gread through al the following filters.
Furthermore, if feedbadk to previous stages is used, the whole system tends to slow down after eadh
operation.

e Granularity of Pipes and Filters systems is usually set medium or coarse. This is due to the dficiency of
these systems is based on the suppasition that pipe communication is a ssimple adion compared to the
filters operation. If the time spent communicating tends to be larger than the time required to operate on
the flow of data, the performance of the system deaeases.

* Pipesand Filters systems can degenerate to the point where they beame abatch sequential system, thisis
eat step processes al data @ a single antity. In this case, ead stage does not incrementally processa
stream of data. To avoid this stuation each filter must be designed to provide a @mplete incremental
parall el transformation of input datato output data [ SG96].

e Themost difficult asped of Pipesand Filters systemsis error handling. An error reporting strategy should
at least be defined throughout the system. However, concrete strategies for error recovery or handling
depend dredly on the problem to solve. Most applicaions consider that if an error occurs, the system
either restarts the pipe, or ignores it. If none of these ae possble the use of alternative patterns, such as
the Layers pattern [POSA9€] is advised.



Known uses

e The butterfly communication structure, used in many parallel systems to oltain the Fast Fourier
Transform (FFT), presents a basic Pipes and Filters pattern. Input values are propagated through
intermediate stages, where filters perform cdculations on data when it is available. The whole
computation can be viewed as a flow through crossng pipes that conned filters [Fos94].

e Pardle seach agorithms mainly present a Pipes and Filters gructure. An example is the parallel
implementation of the CYK Algorithm (Cocke, Younger and Kasami), used to answer the membership
question: "Given a string and a grammar, is the string member of the language generated by the
grammar?' [CG88, NHST94].

e Operations for image processng, like cnvolution, where two images are pased as dreams of data
through several filters (FFT, multiplicaion and inverse FFT) in order to cadculate their convolution
[Fos94).

Related patterns

The Pipes and Filters pattern for parallel programming is presented as an extension of the original Pipes and
Filters pattern [POSA96] and Pipes and Filters architecura style [Shaw95, SG96]. Other patterns that share
the similar ordered transformation approach can be found in [PLoP94]; espedaly consider the Pipe and
Filters pattern and the Streams pattern. Another pattern that can be consulted for implementation issues using
C++ isthe Pipeline Design Pattern [VBT95].

Parallel Hierarchies

The Parallel Hierarchies pattern is a paralel extension of the Layers pattern approach [POSA96, Shaw9s,
SG96] with elements of functional parallelism. The order of operations on data is the most important feaure.
Parallelism is introduced when two or more components of a layer are &le to exist simultaneoudly, performing
the same operation. Components can be aeaed staticdly, waiting for cdls from higher layers, or dynamicdly,
when a cdl triggerstheir credion.

Examples
A Non-programmning Example

Consider the ntrol of hand motion by the brain. Nerves conduct impulses from the brain to muscles,
controlli ng their contradion, and sensing their position. A muscle cntrads or relaxes, performing forces on
points of the bone structure, modifying its position. However, a wordinated movement is only the result of
the simultaneous and ordered contradion or relaxation of several muscles, each one returning information of
its pasition through rerves to the brain. A simple or complex movement is achieved as a result of a request
from the brain, triggering several nervesto contrad or relax muscles, which at the same time return feedbadk
signals until the bone has a predse postion. The hierarchy of nervous, muscular and bae tissues
acomplishes the motion of any part of the body.

A Programming Example

Suppcse a omputer-controlled industrial roba system, which consists of several arms with hands [Fro96,
PLoP94]. Each hand grabs or releases objeds, and ead arm moves its hand around. The structure of the
roba program is presented as a hierarchy (Figure 4). In order to manufadure an article, the roba
communicaes with its hands and arms, adivating them and causing them to carry out a set of physicd tasks
and movements. When a physicad hand completes its grab or release operation, the hand sends a message
badk to its asociated arm. Now, the am knows that it is sfe to start moving the physicd arm. Similarly, an
arm sends badk messages to the roba when it has completed its move operation. Arms ad simultaneously,
until they have manufacured an article.
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Figure 4. A robot system program hierarchy.
Problem

It is necessary to perform a computation repeatedly, composed of a series of ordered operations on a set of
ordered daa. Not every problem meds this criterion. Consider a program whose output may be the result of
just a single mmplex computation as a series of conceptually ordered simple operations, exeauted not for
value but for effed, at different levels. An operation at a high level requires the execution of one or more
operations at lower levels. If this program is carried out serialy, it could be viewed as a chain of subroutine
cdls, evaluated one dter another. Generally, performance & exeaution timeis the feaure of interest.

Forces

From the problem description and other additional considerations of granularity and load balance in parall el
design [Fos94, CT92], the foll owing forces should be considered for the Parall el Hierarchies pattern:

« Perform computation as a hierarchy of ordered operations ®veral times, in a single exeaution.

e Dataisshared among adjacant layers.

« The same group of operations can be simultaneously performed several times on different pieces of data.
e Operations may be different in sizeand level of complexity.

« Dynamic aedion and destruction of componentsis preferred over static, to achieve load balance

* Improvement in performanceis achieved when exeaution time deaeases.

Solution

Parallelism is introduced by allowing the simultaneous exeattion d more than one instance per layer
throughtime. In a Layer pattern system, when an operation triggers an operation, this may involve the
exeaution of operationsin several layers. These operations are usually triggered by afunction cdl, and dataiis
shared in the form of arguments for these function cdls. During the execution of operations in eech layer,
usually the higher layers have to wait for aresult from lower layers. However, if ead layer is represented by
more than one mmponent, they can be exeauted in parallel and service new requests. Therefore, at the same
time, several ordered sets of operations can be caried out by the same system. Several computations can be
overlapped in time [POSA96, Shaw95].

Structure
This pattern is compaosed of conceptually-independent entities, ordered in the shape of hierarchies of layers.

Ead layer, as an implicit different level of abstradion, is composed of several components that perform the
same operation. To communicae, layers use function cdls, referring to ead other as elements of some



composed structure. The same cmputation is performed by different groups of functionally related
components. Components smultaneously exist and processduring the execution time (Figure 5).
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Figure5. Parall el Hierarchies pattern.

Participarts

Layer. The responsibiliti es of alayer component are to provide operations or functions to more complex
level layers, and to delegate more simple subtasks to layersin lesscomplex levels. During runtime, more
than one component per layer is all owed to exeaute concurrently with others.

Dynamics

Asthe parallel execution of layer elementsis all owed, atypicd scenario is propased to describe its basic run-
time behaviour. All layer elements are adive & the same time, accedting function cadls, operating, and
returning or sending another function cdl to elements in lower level layers. If a new function cdl arrives
from the dient, afree éement of the first layer takesit and starts a new computation.

As gated in the problem description, this pattern is used when it is necessary to perform repeaedly a
computation, as ries of ordered operations. The scenario presented here takes the simple cae when two
computations, namely Computation 1 and Computation 2, have to be performed. Computation 1 requires
the operations Op.A, which requires the evaluation of Op.B, which reeds the evaluation of Op.C.
Computation 2 is lesscomplex than Computation 1, but requires to perform the same operations Op.A and
Op.B. The parall el exeaution is as foll ows (figure 6):

The Client cdls a cmmponent Layer Al to perform Computation 1. This component cdls to a
component Layer B1, which similarly calls a cwomponent Layer C1. Both components Layer A1l and
Layer B1 remain blocked waiting to recéve areturn message from their respedive sub-layers. Thisisthe
same behaviour than the sequential version of the Layers pattern [POSA96].

Parall elism isintroduced when the Client issues another cal for Computation 2. This cannot be serviced
by Layer Al, Layer B1 and Layer C1. Another instance of the component in Layer A, cdled Layer A2
- that either can be aeaed dynamicdly or be waiting for requests gatically - recaeves it and cdls another
instance of Layer B, Layer B2, to servicethis cdl. Due to the homogeneous nature of the components of
ead layer, every component in a layer can perform exadly the same operation. That is predsely the
advantage of allowing them to operate in parallel. Therefore, any component in Layer B is capable to
serve cdls from componentsin Layer A. Asthe components of alayer are not exclusive resources, it isin
genera posdble to have more than one instance to serve cdls. Coordination between components of
different layers is based on a kind of client/server schema. Finally, each component operates with the
result of the return message. The main ideais that al computations are performed in a shorter time.
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Figure 6. Scenario for Parallel Hierarchies pattern.

I mplementation

The implementation processis based on the four stages mentioned above in the Context and Implementation
in general sedions.

Partitioning. Initialy, it is necessary to define the basic Layer pattern system which will be used with
paralé instances. the cmputation to be performed is decomposed into a set of ordered operations,
hierarchicdly defined and related, determining the number of layers. Following this decomposition, the
component representative of ead layer can be defined. For a concurrent execution, the number of
components per-layer depends on the number of requests to be serviced. Several design patterns have
been propcsed to ded with layered systems. Advice and guidelines to recmgnise and implement these
systems can be found in [POSA96, PLoP94]. Also, consider the patterns used to generate hierarchies, like
A Hierarchy of Control Layers [AEM95] and the Layered Agent Pattern [KMJ96].

Comrrunication. The communication, required to coordinate the parallel exeaution of layer components,
is determined by the services that each layer provides. Charaderistics that should be caefully considered
are the type and size of the shared datato be passed as arguments and return values, the interfacefor layer
components, and the synchronous or asynchronous coordination schema. In general, an asynchronous
coordination is preferred over a synchronous one. The implementation of communication structures
between components depends on the feaures of the programming language used. Usually, if the
programming language has defined the communicaion structures (for instance, function cdls or remote
procedure cdls), the implementation is very simple. However, if the language does not suppart
communicéion between remote cmponents, it is proposed the wnstruction of an extension in the form
of a emmunication subsystem. Design patterns can be used for this. Particularly, patterns like the Broker
pattern [POSA96], the Composite Messages pattern [SC95], the Service Configurator pattern [JS96] and
the Visibility and Comnunication between Control Modues and Actions Triggered by Events [AEM95]
can help to define and implement the required communication structures.

Agglomeration. The hierarchicd structure is evaluated with resped to the expeded performance. Usually,
systems based on identicd hierarchies present a good load-balance. However, if neessary, using the
conjedure-test approadh, layer components can be refined by combination or decmmpaosition o
operations, modifying their granularity to improve performanceor to reduce devel opment costs.

Mapping. In the best case, eath layer component executes smultaneously on a different processor, if
enough procesors are available. Usualy this is not the cae. An approadh proposes to exealte eab
hierarchy on a processor, but if the number of requests is large, some hierarchies would have to bock,
keguing the dient(s) waiting. Another mapping propaosal attempts to place eery layer on a processor.



This smplifies the restriction about the number of requests, but if not all operations require dl layers, this
may overcharge the some processors, introducing load-balance problems. The most redistic gpproach
seems to be a ©mbination of the both previous ones, trying to maximise processor utilisation and
minimise ommunicdion costs. In general, mapping of layers to procesors is gedfied static, allowing
an internal dynamic aredion of new components to serve new requests. As a “rule of thumb”, a Parallel
Hierarchies pattern system will perform best on a shared-memory machine, but a good performance can
be adieved if it cen be aapted to a distributed-memory system with a fast communication network
[Pan96, Pfis9g].

Consequences

Benefits

The Parallel Hierarchies pattern, as the original Layers pattern, is based on increaing levels of
complexity. This alows the partitioning of the computation of a cmplex problem into a sequence of
incremental, simple operations [SG96]. Allowing ead layer to be presented as multiple components
exeauting in parall el alowsto perform the computation several times, enhancing performance

Changes in one layer do not propagate acossthe whole system, as ead layer interads at most with only
the layers above and below, that can be dfeded. Furthermore, standardising the interfaces between layers
usualy confines the €fea of changes exclusively to the layer that is changed. [POSA96, SG96].

Layers suppart reuse. If alayer represents a well-defined operation, and communicates via astandardised
interface it can be used interchangeably in multiple cntexts. A layer can be replacel by a semanticdly
equivalent layer without grea programming effort [POSA96, SG96].

Granularity depends on the level of complexity of the operation that the layer performs. As the level of
complexity deaeases, the size of the components diminishes as well .

Due to several instances of the same @mputation are executed independently on different data,
synchronisation issues are restricted to the communications within just one computation.

Relative performance depends only on the level of complexity of the operationsto be mmputed, since dl
components are adive [Pan96].

Liabilities

Not every system computation can be structured as layers. Considerations of performance may require a
strong coupling between high-level functions and their lower-level implementations. Load balance among
layersisaso adifficult issue for performance[SG96, Pan96).

Many times, a layered system is not as efficient as a structure of communicating elements. If servicesin
upper layers rely heavily on the lowest layers, al data must be transferred through the system. Also, if
lower layers perform excessve or duplicae work, there is a negative influence on the performance In
certain cases, it ispossble to consider a Pipe and Filter architedure instead [POSA96].

If an applicaion is developed as layers, a lot of effort must be expended in trying to establish the right
levels of complexity, and thus, the arred granularity of different layers. Too few layers do not exploit
the potential paralelism, but too many introduce unnecessary communicaions. The granularity and
operation of layers is difficult, but related with the performance quality of the system [POSA96, SG96,
NHST94]

If the level of complexity of the layersis not corred, problems can arise when the behaviour of a layer is
modified. If substantial work is required on many layers to incorporate an apparently locd modification,
the use of Layers can be adisadvantage [POSA96].

Known uses

The homomorphic skeletons approad, developed from the Bird-Meeatens formalism and based on data
types, can be onsidered as an example of the Parallel Hierarchies pattern: individual computations and
communicaions are executed by repladng functions at different levels of abstradion [ST96].

Tree structure operations like seach trees, where aseach processis creaed for eat node. Starting from
the root node of the treg ead processeval uates its associated node, and if it does not represent a solution,



reaursively credes a new seach layer, composed of proceses that evaluate ea@h node of the tree
Processes are adive simultaneously, expanding the search until they find a solution in a node, report it
and terminate [Fos94, NHST94].

« The Gausdan elimination method, used to solve systems of linea equations, is a numericd problem that
can be solved using a Parallel Hierarchies structure. The original system of equations, expressed as a
matrix, is reduced to a triangular form by performing linea operations on the dements of each row as a
layer. Once the triangular equivalent of the matrix is available, other arithmetic operations must be
performed by each layer to oltain the solution of each linea eguation [Fos94].

Related patterns

The Parall el Hierarchies pattern extends the Layers pattern [POSA96] and the Layers gsyle [Shaw95, SG96]
for paralel systems. Severa other related patterns are found in [PLoP94]; more predsely, A Hierarchy of
Control Layers pattern, Actions Triggered by Events pattern, and those under the generic name of Layered
Service Composition patern.

Communicating Sequential Elements

The Comnunicating Sequential Elements pattern is a domain paralelism pattern where eat component
performs the same operations on different pieces of ordered data [Fos94, CT92]. Operations in ead component
depend on partia results in neighbour components. Usually, this pattern is presented as a logicd structure,
conceaved from the ordered data.

Examples
A Non-programmning Example

Consider the cae of a hive of bees. The workers ad as constructors, harvesters, soldiers, and nursemaids.
Each individua is cgpable to eventually perform any of these adivities in cooperation with the others during
its short lifetime. Minute-to-minute ntrol of the hive' s behaviour is dispersed. Changes, like many shiftsin
foraging patterns of honey bees come from signals among the workers, whose successor failure & various
tasks can rise hive-permeaing hormone levels that then brings about changes in the whole hive.

A Programming Example

Consider the ca&e of data mining poblems, in which government and businesses organisations require
information processng to aquire axd analyse data aout customers information, products, taxes, etc.,
devoting alot of computational effort to automaticaly extrad useful information or “knowledge” from these
data. A particular type of data mining is mining for asociations [CSG97, AS96], in which it is important to
discover relations or associations among the information to generate rules for the inference of behaviour. For
example, given a database in which records correspond to customer purchase transadions, the goal in mining
for associationsisto determine which sets of a number of items occur together in more than a given threshold
fradion of these transadions.

A propaosed solution uses an algorithm of several passes over the database. The first pass smply counts item
occurrences to determine sets of items with frequency 1. A subsequent pass say k, consists of two parts or
phases: first the sets of items with frequency k-1 are used to generate aset of candidates, say C,,, using a
certain generation procedure. Next, the database is £anned and the suppart of candidates in Cy is counted.
Fast counting is required to efficiently determine the candidates in C, contained in a given transadion. Data
distribution is used for this. Each processng element counts mutually exclusive locd candidates. With a
large number of elements, a large number of candidates can be counted in a pass However, as part of the
procedure, every element must broadcast its locd data to al other elements at the end of every pass. Finally,
after k passes, the results are available for analysis [CSG97, AS96].



Problem

A computation is required that can be performed as a set of quasi-independent operations on ordered data.
Results cannot be mnstrained to a one-way flow among procesdng stages, but each component executes a
relatively autonomous computation. Communications between components follow fixed and predictable
paths. Consider, for example, a dynamics problem simulation: the data represents a model of ared system,
where any change or modification in one region influences areas above and below it, and perhaps to a
different extent, those on either side. Over time, the effeds propagate to other areas, extending in all
diredions; even the source aeamay experience reverberations or other changes from neighbouring regions.
If this smulation would be exeauted serialy, it would require that computations be performed aaossall the
data to oktain some intermediate state, and then, a new iteration should begin. Generally, performance as
exeaution time is the feaure of interest.

Forces

Considering the problem description and granularity and load balance as other elements of parallel design
[Fos94, CT92], the foll owing forces should be cmnsidered:

* Preservethe predse order of data distributed among processng elements.

e Computations are performed autonomously, on locd pieces of data.

e Every element performs the same operations, in number and complexity.

e Partial results are usually communicaed among reighbour processng elements.
« Improvement in performanceis achieved when exeaution time deaeases.

Solution

Parallelism is introduced as multi ple participating concurrent components, each one appying the same set
of operations on adata subset. Components communicate partial results by exchanging data, usually through
communicaion channels. No data objeds are diredly shared among components; ead one may acessits
own private data subset only. A component communicates by sending data objeds from its locd spaceto
another. This communication may have different variants: synchronous or asynchronous, exchange of a
single data objed or a stream of data objeds, and one to one, one to many, many to one or many or many
communicaions. Often the data of the problem can be mnceived in terms of an ordered logicd structure. The
solution is presented as a network that may refled this logica structure in a transparent and natural form
[CG88, Shaw95, Pan9e].

Sructure

In this pattern, the same operation is almost simultaneously applied to dfferent pieces of data. However,
operations in eat element depend on the partial results of operations in other components. The structure of
the solution involves an ordered logicd structure, conceived from the data structure of the problem.
Therefore, the solution is presented as a network of elements that in general follows the shape imposed by
this dructure. Identica components smultaneously exist and processduring the exeaution time (Figure 7).
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Figure 7. Communicating Sequential Elements.



Participarts

e Sequential element. The responsibiliti es of a processng element are to perform a set of operations on its
locd data, and to provide ageneral interfacefor sending and recaving messages.

e Communication channels. The responsibili ties of a @mmunication channel are to represent a medium to
send and receve data between concurrent elements, and to synchronise ammmunicaion adivity between
them.

Dynamics

A typicd scenario to describe the basic run-time behaviour of this pattern is presented, where dl the
Sequential Elements are adive & the same time. Every Sequential Element performs the same operations, as
a pieceof a processng retwork. In the most smple cae, ead one ommunicates only with a previous and
next others (figure 8). The processng and communicating scenario is as follows:

Element N-1 Channel A Element N Channel B Element N+1

Figure 8. Scenario of Communicaing Sequential Elements.

e A computation is garted when all components Element N-1, Element N, Element N+1, etc. perform at
the same time operation Op.1.

e To continue the computation, all component communicate their partial results through the communication
channels avail able (Here, Channel A and Channel B). Then all components synchronise and receve the
partial results from their previous and next neighbours.

« Once synchronisation and communications are finished, ead component continues computing the next
operation (in this case Op.2). The processrepeds urtil each component has finished its computations.

I mplementation

The implementation processis based on the four stages mentioned above in the Context and Implementation
in general sedions.

e Partitioning. The ordered logicd structure of data is a natural candidate to be initially decomposed into a
network of data sub-structures or pieces. Depending on the predsion required, data pieces have different
size and shape. However, in order to maintain the processload-balance they normally present the same
size and shape. Trying to expose the maximum concurrency, the basic sequential element is defined to
processa unique sequence of operations on only one data piece Hence, the total number of sequential



elements is equal to the number of data pieces, and eat computation presents the same complexity per
time step. While eab sequential element performs the same operations on different data pieces, they
share the same processng nature and structure. However, they can be represented by a single processng
element (for instance, a process task, function, objed, etc.) or a subsystem of processng elements, which
may be designed using design patterns [GHIV 95, POSA96, PLoP94, PLoP95]. Some design patterns that
particularly can be mnsidered for implementing concurrent components are the Active Objed pattern
[LS95] and the “ Ubiquitous Agent” pattern [JP96)].

e Comnunication. The cmmmunicaion is also asociated with the network of data pieces. Each sequential
element is expeded to exchange partial results with its neighbours from time to time through channels.
Channels should perform data exchange and coordinate the operation execution appropriately. An
efficient communicaion depends on the amount and format of the data to be exchanged, and the
synchronisation schema used. Both synchronous and asynchronous shemes can be found in severa
paral el systems, but a synchronous s£hemaiscommonly preferred. An important issue to consider here is
how communicaion channels are defined. In general, this dedsion is linked with the programming
language used. Some languages define predsely atype channel where it is possble to send and to recave
values. Any sequential element is defined to write on the channel, and to real from it. No further
implementation is necessary. On the other hand, other languages do not define the channel type. Thus, it
should be designed and implemented in such a way that allows data exchange between elements. As the
use of channels depends on the language, dedsions about their implementation are delayed to other
refining design stages. From an architedural point of view, channels are defined, whether they are
implicit in the language, or they need to be explicitly creded. Design patterns that can help with the
implementation of channel structures are the Composite Messages pattern [SC95] and the Service
Configurator pattern [JS96].

« Aggdlomeration. The sequential elements and channels defined are evaluated with resped to an expeded
performance. Often, the number of processng and communicaing elements is bigger than what is
required, and some degree of agglomeration can be wnsidered. Causes of agglomeration can be
redundant communicdions, and the amount of communications in a dimension or diredion. As eah
sequential element performs the same operations, changes in the granularity involve only the size of the
amount of data pieces in the network to be processed per component. If they maintain the same
granularity, the structure is normally load balanced. The mnjedure-test approadc is only used then to
modify the granularity to achieve abetter performance

« Mappng. In the most optimistic case, ead sequentia element is assigned to a processor. However,
usualy the number of procesors is a number of times less than the number of processng elements.
Taking this number as the number of elements per procesr, it is posdble to assgn them in a more
redistic form. The important feaure to maximise processor utilisation and minimise mmmunicaion
costs, is balance In these structures, computational efficiency is deaeased due to load imbalances. If the
design is to be used extensively, it is worthwhil e to improve its load balance. Approaches to dothis can
use cyclic mapping or dynamic mapping. As a “rule of thumb”, systems based on the Comnunicating
Sequential Elements pattern will perform best on a SIMD (single-instruction, multi ple-data) computer, if
array operations are available. However, if the computations are relatively independent, a respedable
performance @n be adieved using a shared-memory system [Pan96].

Consequences
Benefits

« Dataorder and integrity is granted, due to ead sequential element accesses only its own loca data subset,
and there is no data diredly shared among components [ SG96, ST96].

* As dl sequential elements dare the same functional structure, their behaviour can be modified or
changed without grea effort [SG96, ST96].

« Itisrelatively easy to structure the solution in a transparent and natural form as a network of elements,
refleding the logical structure of datain the problem [CG88, Shaw95, Pan96].

e Asall components perform the sasme computation, granularity is independent of functionality, depending
only on the sizeand number of the dementsin which datais divided. It is easily to change in case abetter
resolution or predsion isrequired.



e This pattern can be used on most hardware systems, considering the synchronisation charaderistic
between elements as the only restriction [Pan96].

Liabilities

e The performance of systems based on communicaing elements is heavily impaded by the
communicaion strategy (global or locd) used. Usually, the procesors available ae not enough to
suppat all elements. In order to apply a cmputation, ead processor operates on a subset of the data. Due
to this, dependencies between data, expressed as communicdions, can slow down the program execution
[Fos94, Pan96).

< In the use of this pattern load balance is 4ill a difficult problem. Often, data is not easily divided into
same size subsets of data and the computational intensity varies on different processors. To maintain
synchronisation means that fast processors must wait until the slow ones can cach up, before the
computation can proceel to the next set of operations. An inadequate load balance impads grongly on
performance The dedsion to use this pattern should be based on how uniform in almost every asped can
the system be [Pan96].

« The synchronous charaderistic of the gplicaion determines efficiency. If the gplication is synchronous,
a significant amourt of effort is required to get a minimal increment in performance If the gplicaion is
asynchronous, it is more difficult to parallelise, and probably the dfort will not be worthwhile, unless
communicaions between processors are very infrequent [ Pan96].

Known uses

¢ The one-dimensional wave ejuation, used to numericd model the motion of vibrating systems, is an
example of the Comnunicating Squential Elements pattern. The vibrating system is divided in sedions,
and eat processng element is resporsible for the mmputation of the position at any moment of a
sedion. Each computation depends only on partial results of the computation at neighbouring sedions.
Thus, ead computation can be done independently, except when data is required from the previous or
next sedions [NHST94].

e Simulation of dynamic systems, such as an atmosphere model, is another use of Communicaing
Sequential Elements. The model usualy is divided as a redangular grid of blocks. The simulation
procedls in a series of time steps, where ea@h processng element computes and updates the temporal
state in a block with data of the previous gate and updates of the state of neighbouring blocks. Integrating
the time steps and the blocks makes possble to determine the state of the dynamic system at some future
time, based on aninitial state [Fos94)].

« Image processng problems, such as the component labelling problem. An image is given as a matrix of
pixels, and each pixel must be labell ed acording to certain property - for instance, connedion. The image
isdivided in sub-images, and mapped to a network of processng elements. Each processng element tests
for connedion, and labels all the non-edge pixel of its sub-image. Edge pixels between sub-images are
labell ed in cooperation by the two respedive processng elements [Fos94].

Related patterns

The Communication Sequential Elements pattern is based on the original concept of Communicating
Sequential Processes (CSP) [HoareB84)]. Patterns that can be mnsidered related to this processng approac are
the Ubiquitous Agent Design Pattern [JP96] and the Visibility and Commnunication between Agents pattern
[ABM96].

M anager-Workers

The Manager-Workers pattern is a variant of the Master-Jave pattern [POSA96] for paralel systems,
considering an adivity parallelism approach where the same operations are performed on ordered data. The
variation is based on the fad that components of this pattern are proadive rather than readive [CT92]. Each
processng component simultaneously performs the same operations, independent of the processng adivity of
other components. An important feaure isto preserve the order of data.



Examples
A Nonprogramming Example

Suppose asimple scheme for arepair centre, involving a manager and a group of technicians. The manager is
responsible for recaving articles, and assigning an article to be repaired to a technician. All technicians have
similar skill s for repairing articles, and ead one is resporsible to repair one aticle a a time, independent of
the other technicians. When a technician finishes repairing his assignment, he notifies the manager; the
manager then assigns him a new article to be repaired, and so on. In general, repairing articles represents an
irregular problem: some aticles may present a simple fix and take alittl e amount of time, while others may
require amore complex repair. Also, the effediveness of this heme relies on the fad that the number of
articlesthat arrive to the centre can be substantially larger than the number of technicians available.

A Programming Example

Consider a red-time ultrasonic imaging system [GSVOM97] designed to aaquire, process and dsplay a
tomographic image. Datais aaquired based on the refledion of an utrasonic signal that excites an array of 56
ceramic sensors. Data is amplified and digitalised to form a bladk and white image of 56x256 pxels, eath
one represented by a byte. An interpolation program is required to processthe image, enlarging it to make it
cleaer to the observer. The image is displayed on a standard resolution monitor (640x480 pixels) in red-
time, thisis, at least 25 frames per second. In acordance with these requirements, an interpolation by a factor
3 between columns was chosen, enlarging the information of ead image threetimes. A cdculation shows the
volume of data to be processs per second: ead frame is represented as 168x256x1 bytes, and using 25
frames per second, makes a total of 1.075200 Mbytes per second. Using a manager-worker system for the
cubic interpalation, the image is recaéved a stream of pixels by the manager, which assgns to ead worker a
couple of pixels. Each worker uses eat couple of pixels asinput data, and cdculates the cubic interpolation
between them, producing other four interpolated pixels. As the number of workers is less than the total
number of pixels, eat worker requests for more work to the manager as on as it finishes its process and
SO on.

Problem

A computation is required where independent computations are performed, perhaps repeatedly, on dl
elements of some ordered daa. Each computation can be performed completely, independent of the adivity
of other elements. Data is distributed among components without a spedfic order. However, an important
fedure isto preserve the order of data. Consider, for example, an imaging problem, where the image @an be
divided into smaller sub-images, and the computation on ead sub-image does not require the exchange of
messages between components. This can be caried out urtil completion, and then the partia results
gathered. The overall affed isto apply the mmputation to the whole image. If this computation is carried out
serialy, it should be exeauted as a sequence of serial jobs, applying the sasme computation to ead sub-image
one dter another. Generally, performance & execution time is the feaure of interest.

Forces

Using the previous problem description and ather elements of parallel design, such as granularity and load
balance[Fos94, CT92], the foll owing forces are found:

* Preserve the order of data. However, the spedfic order of data distribution and operation among
processng elementsis not important

« The same cmmputation can be performed independently and simultaneoudly on different pieces of data.

« Datapieces may exhibit different sizes.

« Changesin the number of processng elements sould be refleded by the execution time.

« Improvement in performanceis achieved when exeaution time deaeases.



Solution

Parallelism is presented by having multiple data sets processed a the same time. The most flexible
representation of this is the Manager-Workers pattern approach. This dructure is compaosed of a manager
component and a group of identical worker components. Each worker is capable of performing the same
computation. It repeaedly seeks a task to perform, performs it and repeas, when no tasks remain, the
program isfinished. The exeaution model is the same, independent of the number of workers (at least one). If
tasks are distributed at run time, the structure is naturally load balanced: while aworker is busy with a heavy
task, another may perform several shorter tasks. To preserve data integrity, the manager program takes care
of what part of the data has been operated on, and what remains to be computed by the workers [POSA96,
CG88, Shaw95s, Pan96, CT92].

Sructure

The Manager-Workers pattern is represented by a manager, preserving the order of data axd controlling a
group of processng elements or workers. Conceptually, workers have accssto dfferent pieces of data & the
same time. Usually, only one manager and several identical worker components smultaneously exist and
processduring the exeaution time (Figure 9).

Thread of
Exeaition

* Manager. The responsihiliti es of a manager are to creae anumber of workers, to partition work among
them, to start up their exeaution, and to compute the overall result from the sub-results from the workers.

e  Worker. The responsibili ty of aworker isto seek for atask, to implement the computation in the form of
a set of operations required by the manager, and to perform the computation.

Figure 9. Manager-Workers pattern.

Participarts

Dynamics

A typicd scenario to describe the run-time behaviour of the Manager-Worker pattern is presented, where dl
participants are simultaneously adive. Every worker performs the same operation on its available piece of
data. As on as it finishes procesdng, returns a result to the manager, requiring for more data
Communications are restricted between the manager and ead worker. No communication between workers
isalowed (figure 10).

In this cenario, the stepsto perform a set of computationsis as follows:

e All participants are aeded, and wait until a computation is required to the manager. When data is
avail able to the manager, this divides it, sending data pieces to ead waiting worker.

« Eacd worker recaves the data and starts processng an operation Op on it. This operation is independent
to the operations on other workers. When the worker finishes processng, it returns a result to the
manager, requiring for more data. If thereis dill datato be operated, the processrepeds.



The manager is usualy replying to requests of data from the workers or receving their partia results.
Once dl data pieces have been processed, the manager assembles atotal result with the partia results and
the program finishes. The non-serviced requests of data from the workers are ignored.

Manager Worker 1 Worker 2 - Worker n
request >4E:|
Data _LA Op
request Ty > [
Data Op
requ%t » T
Data — Op
L =
< Data L |
request |_> > I_I_I
1
Data < op. []
request L p) Data

5

B

Figure 10. Scenario for the Manager-Workers pattern.

I mplementation

The implementation processis based on the four stages mentioned above in the Context and Implementation
in general sedions.

Partitioning. The ordered data to be operated on by the cmmmon computation is decomposed into a set of
data pieces. This partitioning criteria of the ordered datais a dea opportunity for parallel execution, and
it is used to define the partitioning and gathering adivity of the manager component. On the other hand,
the same cmputation to be performed on different data pieces is used to define the structure of each one
of the worker components. Sometimes, the manager is also implemented to perform the computation on
data pieces as well . Usually, the structure of the manager component can be reused if it is designed to ded
with diff erent data types and sizes, delimiting its behaviour to dvide, deliver and gather data piecesto the
worker components. It is pasdgble to implement a manager component using a single dement approach
(for instance, a process a task, a function, an objed, etc.), or to define asub-system of elements that
perform manager adivities. Usually, concurrency the sub-system elements can be used, defining different
interfaces for different adions. Design patterns [GHJIV 95, POSA96, PLoP94, PLoP95] can help to define
and implement such interfaces. On the other hand, worker components can be dso defined either by
single dements or by sub-systems of elements. Patterns that particularly can help with the design and
implementation of the manager and worker components are the Active Objed pattern [LS95] and the
Service Configurator pattern [JS96]. In the cae of the worker components, other design patterns that may
provide information about their implementation are the “ Ubiquitous Agent” pattern [JP96] and the Objed
group pattern [Maf96].

Comnunication. The communication structure that coordinates the execution between the manager and
worker should be defined. As workers are just allowed to communicate with the manager to get more
work, defining an appropriate communicdion structure between manager and worker components is a
key task. The communicdion structure should allow the interadions between the manager and ead
worker (request a data piece ad, once processd, its delivery to the manager). Important parameters to
consider are the size and format of data, the interfaceto service arequest of data, and the synchronisation
criteria. In general, a synchronous coordination is commonly used in Manager-Worker pattern systems.



The implementation of communication structures depends on the programming language used. In general,
if the language mntains basic communication and synchronisation instructions, communication structures
can be implemented relatively easily, foll owing the single dement approach. However, if it is possble to
reuse the design in more than one gplication, it would be @mnvenient to consider a more flexible
approach using configurable mmmunication sub-systems for the exchange of different types and sizes of
data. Design patterns can help to suppart to the implementation of these structures; espedally, consider
the Composite Messages pattern [SC95], the Service Configurator pattern [JS96], and the Visibility and
Comrrunication between Control Modues and Client/Server/Service patterns [AEM 95, ABM 96|
Agglomeration. The data division and communicaion structure defined previously are evaluated with
resped to the performance requirements. If necessary, the size of data pieces is changed, modifying the
granularity of the system. Data pieces are combined or divided into larger or smaller pieces to improve
performance or to reduce @mmunication costs. Due to inherent charaderistics of this pattern, the process
is automaticdly balanced among the worker components, but granularity is modified in order to balance
the processbetween the manager and the workers. If the operations performed by the workers are ssimple
enough and workers receve relatively small amount of data, workers may remain idle whil e the manager
is busy trying to serve their requests. On the mntrary, if worker operations are too complex, the manager
will have to keg a buffer of pending data to be processed. It is noticedle that load-balance between
manager and workers can be adieved simply by modifying the granularity of data division.

Mappng. In the best case, the hardware dlows that ead component is assgned to a processor with
enough communication links to perform efficiently. However, generally the number of components is
defined a lot bigger than the number of avail able procesrs. In this casg, it is common to place asimilar
number of worker components on each procesor. To ke the structure the most balanced possble, the
manager component can be exeauted on a dedicaed processor, or at least on a processor with a reduced
number of working components. The cmpeting forces of maximising procesor utilisation and
minimising communication costs are dmost totally fulfilled by this pattern. Mapping can be spedfied
staticadly or determined at run-time, all owing a better load-balance. Asa“rule of thumb”, paralel systems
based on the Manager-Workers pattern will perform reasonably well on a MIMD (multiple-instruction,
multi ple-data) computer, and it may be difficult to adapt to a SIMD (single-instruction, multi ple-data)
computer [Pan96].

Conseguences

Benefits

The order and integrity of data is preserved and granted due to the defined behaviour of the manager
component. The manager takes care of what part of the data has been operated on, and what remains to be
computed by the workers

An important charaderistic of the Manager-Workers pattern is due to the independent nature of
operations that ead worker performs. Each worker requests for a different pieceof data during execution,
which makes the structure to present a natural 1oad balance [POSA96, CT92].

As every worker component performs the same computation, granularity can be modified easily, dueto it
depends only on the size of the pieces in which the manager divides the data. Furthermore, it is possible
to exchange worker components or add new ones without significant changes to the manager, if an
abstrad description of the worker is provided [POSA96].

Synchronisation is simply achieved becaise ammmunications are restricted to only between manager and
eadt worker. The manager isthe component in which the synchronisation is gated.

Using the Manager-Worker pattern, the paral elising task isrelatively straightforward, and it is possible to
achieve arespedable performanceif the gplication fits this pattern. If designed carefull y, the Manager-
Worker pattern enables the performanceto be increased without significant changes [POSA96, Pan96].

Liabilities

The Manager-Workers pattern presents exeaution problems if the number workersis large, the operations
performed by the workers are too simple, or workers receve small amounts of data. In all cases, workers
may remain idle while the manager is busy trying to serve dl their requests. Granularity should be
modified in order to balancethe amount of data among the workers.



¢ Manager-Worker architedures are not always feasible when performance is a aiticd issue. If the
manager adivities - data partition, recave worker requests, send data, receve partial results, and
computing the final result - may take alonger time compared with the processng time of the workers, it
can be considered that the overall performance depends mostly on the manager performance A poar
performance of the manager impads heavily on the performance of the whole system [POSA96, CT92].

« Many different parameters must be caefully considered, such as drategies for work subdivision, manager
and worker collaboration, and computation of final result. Also, it is necessary to provide eror-handling
strategies for failure of worker exeaution, fail ure of communication between the manager and workers, or
failure to start-up parall el workers[POSA96].

Known uses

« Connedivity and Bridge Algorithms are a application of the Manager-Workers pattern. The problem is
to determine if a cnneded graph has abridge. A bridge is an edge whose removal disconneds the graph.
A simple dgorithm attempts to verify if an edge is a bridge by removing it and testing the @nnectivity of
the graph. However, the required computation is very dense if the number of edges in the graph is large.
A paralel version using a Manager-Worker pattern approach is described as follows: eat worker, using
the dgorithm proposed, is responsible for verifying if an edge is a bridge. Different workers check for
different edges. The manager distributes the graph information to the workers, builds the final solution,
and produces results [NHST94].

< In matrix multiplicaion, the matrixes are distributed among the workers by the manager. Each worker
cdculates products and returns the result to the manager. Finaly, with all the results available, the
manager can build the final result matrix [POSA96, Fos94].

« Inimage processng, the Manager-Worker pattern is used for transformations on an image that involve an
operation on ead pieceof the image independently. For example, in computing discrete msine transform
(DCT), the manager divides the image in sub-images, and dstributes them among the workers. Each
separate worker obtains the DCT of its sub-images or pixel block and returns the result to the manager.
The final image is then composed by the manager, using all the partial results provided by the workers
[POSA96, Fos94].

Related patterns
The Manager-Workers pattern can be mnsidered as a variant of the Master-Save pattern [POSA96, PLoP94]

for paralel systems. Other related petterns with similar approaches are the Objed Group pattern [Maf96],
and the Client/Server/Service pattern [PLoP94].

Shared Resource

The Shared Resource pattern is a spedalisation of the Blackboard pattern [POSA96], ladking a ntrol
component and introducing aspeds of adivity paralelism, in which computations are performed, without a
prescribed order, on ordered data. Commonly, components perform different computations on different data
pieces sSmultaneously.

Examples
A Non-programmning Example

Imagine aprojed of construction in general. An artifad (a buil ding, a software program, a businessprogram,
etc.) is the result of the moperation among several persons or teams, with different skills. Each one has
different interests, resporsibilities and perceptions of the projed. All people or teams participate
independently and simultaneously with different adions to achieve the result. A common objedive ad unity
among them will produce asatisfadory result in time and consistent form.



A Programming Example

Consider a printed circuit board router program [Chien93]. A route is a series of wires or nets from one pin to
another on a drcuit board. Complex circuit boards might have alarge number of routes. Routes must avoid
obstades on the board and other routes. A parallel implementation propases to process ead route by
independent components, searching simultaneously on a data structure (representing the grid of coordinates
on the board) for the shortest route between pins. Each component accesses the data structure, proposing a
new probable free ordinate to add to its route from a given start point on the board. If thisis occupied by an
obstade or another route, the component makes another propcsal. Once a oordinate is added, eat
component cdculates the lowest total distance estimate for itsroute.

Problem

It is necessary to apdy completely independent computations as sts of non-deterministic interactions on
elements of some centralised, perhaps not even ordered, data structure. Consider for example, a knowledge
exchange problem. Components communicate via a shared resource, eat one indicaing its interest in a
certain data objed. The shared resource provides sich data immediately if no ather component is accessng
it. Data consistency and preservation are tasks of the shared resource The internal representation or order of
datais important, but the order of operations on it isnot a central issue. Generally, performance & execution
time isthe feaure of interest.

Forces

Taking the previous problem description and other elements of parallel design such as granularity and load
balance[Fos94, CT92], the foll owing forces can be found:

* Preservethe order or integrity of data structure.

« Ead processng element performs simultaneously a different and independent computation on different
pieces of data.

« No spedfic order of data accesby processng elementsis defined.

e Improvement in performanceis achieved when exeaution time deaeases.

Solution

Each component exeutes smultaneously, capable of performing dfferent and independent operations,
accessng the data as dhared resource when needed. Paralelism is absolute among components. any
component can be performing different operations on a different piecedata & the same time, without any
prescribed order. The restriction is that no pieceof information is accessed at the same time by different
components. Communication can be adieved as function cdls to require aservice from the shared resource
The Shared Resource pattern can be cnsidered as an adivity paralel variation of the Blackboard pattern
[POSA96] without a control instance that triggers the execution of sources. An important feaure is that the
exeaution does not foll ow a predse order of computations [ Shaw95, Pan96].

Thread of
Exeation

Function
calls

Figure 11. Shared resource pattern.



Sructure

This pattern is based only on a shared resource & a central structure that controls the acces of different
sources. Usually, a shared resource mmponent and several different source mmponents smultaneously exist
and processduring the exeaution time (Figure 11).

Participarts

e Shared resource. The responsibility of a shared resource is to coordinate accesof sources, preserving
the integrity of data.

e Source. The responsibiliti es of a source ae to perform its independent computation, until requiring a
service from the shared resource. Then, the source has to cope with any acaessrestriction impaosed by the
shared resource

Dynamics

A typicd scenario to describe the basic run-time behaviour of the Shaed Resource pattern is presented. All
participants are simultaneously adive. Every source performs a different operation, requiring the shared
resource for operations. As ®on as it finishes processng, returns to the cdling source to continue its
computations. Communicaions between sources are not allowed. The shared resource is the only common
component among the sources (figure 12).

The functionality of this general scenario is explained as foll ows:
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Figure 12. Scenario of Shared resource pattern.

« The Shared resource component is able to perform a couple of adion, Op.R and Op.S. Each source starts
processng, and cdls the Shared resource to perform one of its operations. Sources perform different,
independent operations.

« Source A performs Op.Al, requiring the Shared resour ce to perform operation Op.R. At the same time,
Source B and Source N start performing Op.B1 and Op.N1. The Shared resource returns a value to
SourceA.

e Source N starts performing Op.N2, requiring now the Shared resource to perform Op.S. Meawwhile,
Source A processes Op.A2, and Source B processes Op.B2. After some time, operation Op.B2 requires



the Shared resour ce to perform again Op.R. Thisreturns a value to Source N and continues with the cdl
from Sour ce B.
All operations continue in time, until all independent computations in the sources finish.

I mplementation

The implementation processis based on the four stages mentioned above in the Context and Implementation
in general sedion.

Partitioning. The computation to be performed can be viewed as the dfed of different independent
computations on the data structure. Each source mmponent is defined to perform a complete computation
on the shared resource Sources can be executed simultaneously due to their independent processng
nature. However, the shared resource implementation should reflea a division and integrity criteria of the
data structure, following the basic assumption that no pieceof data is operated at the same time by two
different sources. Therefore, sources may be implemented by a single entity (for instance, a process a
task, an objed, etc.) that performs a defined computation, or a sub-system of entities. Design patternsin
genera [GHJIV95, POSA96, PLoP94, PLoP95] may help with the implementation of the sources
components as sub-systems of entities. Also, patterns used in concurrent programming like the Objed
group pattern [Maf96], the Active Objed pattern [LS95], and Categorize Objeds for Concurr ency pattern
[AEM95] can help to define and implement sources. Other design patterns like the Doube-Checkel
Locking pattern [SH96], the Thread-Sedfic Storage pattern [HS97] and those presented in [McKe95]
ded with issues about the safe use of threads and locks, and may provide help to implement the expeced
behaviour of the shared resource @mponent.

Comnunication. The cmmunicaion to coordinate interadion of sources and shared resource is
represented by an appropriate communicaion interfacethat allows the acessto the shared resource This
interfaceshould consider the form in which requests are issued to the shared resource, and the format and
size of the data & argument or return value. In general, an asynchronous coordination schema s used, due
to the heterogeneous behaviour of the sources. The implementation of a flexible interface between
sources and shared resource can be done using design patterns for communication, like the Service
Configurator pattern [JS96], the Compasite Messages pattern [SC95], and the Compatible Heterogeneous
Agents and Visibility and Communication between Agents patterns [ABM96].

Agglomeration. The components and communicaion structures defined in the first two stages of a design
are evaluated, comparing with the performance requirements. If necessary, operations can be recombined
and reassgned to crede different sets of source mmponents with different granuarity and load-balance
Usualy, due to the independent nature of the sources, it is difficult to achieve a good performance
initially, but at the same time, it is easy to perform changes on the sources without affeding the whole
structure. The cnjedure-test approadc is used intensively, modifying both granularity and load-balance
of source mmponents to olserve which combination can be used to improve performance However,
espedal care should be taken with the load-balance between sources and shared resource. The operations
of the shared resource should be lighter than any source @mmputation, to allow a fast response of the
shared resourceto requests. Most of the mmputation adivity is suppose to be performed by the sources.
Mappng. In the best case, trying to maximise processor utilisation and minimise cmmunication costs,
eadt component should be asdgned to a different processor. Due to the number of components is usually
expeded to be not too large, enough parall el processor can be mmmonly avail able. Also, the independent
nature of sources all ows that each source mmponent can be executed on a different processor. The shared
resource dso is expeded to be exeatted on a single processor, and al sources should have
communicaion acaessto it. However, if the number of processorsis limited and less than the number of
components, it is difficult and complex to load-balance of the whole structure. To solve this, mapping can
be determined at run-time by load-balancing algorithms. As a “rule of thumb”, systems based on the
Shaed resource patterns present a good performance when implemented on a MIMD (multiple-
instruction, multiple-data) computer. Also, it would be very difficult to implement them for a SIMD
(single-instruction, multiple-data) computer [Pan96, Pfis95].



Consequences

Benefits

Integrity of the Shared resource data structure is preserved by the restriction that no data pieceis accessed
at the same time by different components.

From the perspedive of a paralel designer, this pattern is the simplest to develop due to the minimal
dependence between components. Fundamentally, the operations on eat data dement are completely
independent. That is, ead pieceof data can be cmputed on different machines, running independently as
long as the gpropriate input data ae available to ead one. It is relatively easy to achieve asignificant
performancein an applicaion that fits this pattern [Pan96].

As its components (the shared resource and the component sources) are strictly separated, the Shaed
resource pattern supparts changeabili ty and maintainability [POSA96, Pan96].

The Shared resource pattern supparts sveral levels of granuarity. If required, the shared resource
component can provide operations for different data sizes.

Due to source mmponents perform different and independent operations, they can be reused in different
structures. The only requirement for reuse is that the source to be reused is able to perform certain
operations on the data type in the new shared resource [POSA 96, Pan96].

A shared resource can provide fault tolerancefor noise in data [POSA96, SG96].

The adivities of synchronisation are defined and locdised generally in the shared resource @mmponents,
and restricted between the shared resource and ead one of the source @mponents.

Liabilities

Due to the different nature of each component, load balance is difficult to achieve, even when exeauting
eadt component on a different processor. The difficulty increases if several components run together in a
processor [Pan96].

Results in a shared resource gplicaion are difficult to reproduce Inherently, computations are not
ordered following a deterministic dgorithm and its results are not reproducible [POSA96]. Furthermore,
the parall elism of its components introduces a non-deterministic feature to the exeaution [Pan96].

Most shared resource structures require agrea development effort, due to the variety of requirements in
different problem domains [POSA96].

Even when parall elism is straightforward, often the shared resource does not consider the use of control
strategies to exploit the parallelism of sources and to synchronise their adions. Due to this, in order to
preserve its integrity, the design of the shared resource mmponent must consider extra mechanisms or
synchronisation constraints to access its data. An alternative is perhaps to use the Blackboard pattern
[POSA96].

Known uses

Mobil e robotics control is an application example of the Shaed resource pattern. The software functions
for a mobile robaics system has to ded with external sensors for acquiring input and aduators for
controlli ng its motion and planning its future path in red-time. Unpredictable events may demand a rapid
response: imperfed sensor input, power failures, mechanical limitations in the motion, etc. A solution
example, the CODGER system, uses the Shaed resource pattern to model the moperation of tasks for
coordination and resolution of uncertain situations in a flexible form. CODGER is composed of a
"captain”, a"map navigator", a"lookout", a"pilot" and a perception system, each one sharing information
by a common shared resource [ SG96].

A red-time scheduler is another application of the Shaed resource pattern. The gplication is a process
control system, in which a number of independent processs are executed, ead having its own red time
requirements, and therefore, no processcan make assumptions about the relative speed of other processes.
Conceptually, they are regarded as different concurrent processes coordinated by a red-time scheduler,
accessng, for instance, computer resources (Consoles, printers, 1/0 devices, etc.) which are shared among
them. The red-time scheduler isimplemented as a shared resource @mponent to give processes exclusive
accessto a computer resource, but does not perform any operation on the resource itself. Each different



processperforms its operations, requiring from time to time the use of the computer resources. The shared
resource mmponent grants the use of the resources, maintaining the integrity of the data read from or
written to aresource by ead different process[Han77].

e A Tuple space used to contain data, presents a Shaed resource pattern structure. Sources can generate
asynchronous requests to read, remove and add tuples. The tuple spaceis encapsulated in a single shared
resource ®mponent that maintains the set of tuples, preventing two paralel sources from ad
simultaneously on the same tuple [Fos94].

Related patterns

The Shared Resource pattern is considered a spedalisation of the Blackboard pattern [POSA96] without
control component, and introducing aspeds of adivity paralelism Also, it is related to the Repository
architedural style [Shaw95, SG96]. Other patterns that can be cmnsidered related to this pattern are the
Compatible Heterogeneous Agents pattern [ABM96] and the Objed Group pattern [Maf96].

6. Summary

The goal of the present work is to provide software designers and engineas with an overview of the aommon
structures used for parallel software systems, and provide aguidelines on the seledion of architedural patterns
during the initial design stages of parallel software gplicaions. However, as a first attempt at the aedion of a
more organised pettern system for parallel programming it is not complete or detail ed enough to consider every
issue of paralel programming. The patterns described here can be linked with other current pattern
developments for concurrent, paralel and distributed systems. Work on patterns that suppart the design and
implementation of such systems has been addressed previously by several authors [Sch95, Sch98a, Sch98H].
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