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which represents the complete parallel software application time behaviour.

The estimation of the performance of a parallel program using Architectural Performance Models is based on the
following basic assumptions:

• The Software Architecture of the program can be expressed in terms of Software Site components, Software
Structure components and non-structural components. Each group of components provides an independent
contribution to the total performance of the parallel program.

• The Software Structure contribution depends exclusively on the fundamental organisation of components
and connections, expressed in the form of an Architectural pattern.

• Non-structural components behaviour is simulated using a component simulator that exhibits an average
execution time for each component.

• The Architectural Performance Model uses information of both the Architectural pattern and simulation time
parameters to estimate contributions of both structural and non-structural components respectively during
concurrent execution. This information can be used in the performance analysis to obtain good estimations
of the performance of a complete or partially developed parallel program for several different hardware and
software variations.

The Architectural Performance Model is presented here as an approach to approximately estimate in an isolated
form the contribution of Software Structure to the performance of a Parallel Software Architecture. This
information may serve in the future as a method to evaluate performance between different Software Structures.
For example, in the case study presented, the performance contribution of a Software Structure based on the
Manager and Workers Architectural pattern is estimated for structural variations, reflecting that the contribution
of Software Structure oscillated between 31.32% and 71.98% of the total average execution time. Even though
there is a large difference between these values, this information can be used effectively as an approximation
window to estimate the probable performance of systems sharing the same Software Structure, and compare with
other probable program solutions which may use other Software Structures.

The results of the evaluation tests of all our performance estimations have been particularly encouraging.
Architectural Performance Models led to figures that in the average case were more than 12.41% and, in the worst
case, about 36.24% different from those obtained by running the actual program on the real computing
environment. Furthermore, using the component simulator in a concurrent execution results efficient due to the
scale-model simulation speed is too high to be compared to the execution rate of the actual program on a single
processor.

Unfortunately, the ease of use of Architectural Performance Models is not equally satisfactory. The construction
of the scale-model code is not easy and requires a sufficient degree of familiarity with the component simulator
itself. Furthermore, setting up the component simulator parameters is a time-consuming task. These activities,
perhaps, lend themselves to be automated by a software tool.
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The comparisons between the total estimation (obtained from adding Software Structure estimated contribution
and non-structural simulated contribution) and the real average execution times for case are shown in Figure 5.

4. Summary and Conclusions

In summary, the Architectural Performance Model approach makes it possible to simulate a parallel application
program by combining initial information about its Software Structure and time parameters of its components. The
Software Structure of a complete parallel software program consists of a network of components, connected in the
form of an Architectural pattern. The component time behaviour is simulated by a component simulator object that
has been implemented using a Markovian generator kernel, giving estimates of the execution of each component
based on parameters of different distributions that represent its time behaviour. The effect of Software Structure
then can be taken into account by means of predefined components, concurrently sharing the same physical
medium, which indirectly generate a given statistical contribution of the Software Structure to the performance of
the parallel software architecture. The Architectural Performance Model, then, can be seen as a kind of scale-model

Figure 5. Comparisons between the total estimation and real average execution time for each different
Software Structure case

(a) One manager and one worker (b) One manager and two workers

(c) One manager and three workers (d) One manager and four workers

(e) One manager and five workers
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Number of
Processors

Software
Structure

contribution
(seconds)

Simulated
Non-structural

contribution
(seconds)

Total
Estimation
(seconds)

Real Average
Execution

Time
(seconds)

Percentage of
Error

1 15.369 16.997 32.367 32.367 0%

2 7.685 7.986 15.670 17.180 8.79%

3 5.123 5.389 10.512 11.550 8.99%

Table 4: Estimated and real execution times for a Software Structure with 1 manager and 2 workers

Number of
Processors

Software
Structure

contribution
(seconds)

Simulated
Non-structural

contribution
(seconds)

Total
Estimation
(seconds)

Real Average
Execution

Time
(seconds)

Percentage of
Error

1 22.796 16.984 39.780 39.780 0%

2 11.398 8.151 19.549 22.354 12.55%

3 7.599 5.458 13.057 14.362 9.09%

4 5.699 4.160 9.859 15.463 36.24%

Table 5: Estimated and real execution times for a Software Structure with 1 manager and 3 workers

Number of
Processors

Software
Structure

contribution
(seconds)

Simulated
Non-structural

contribution
(seconds)

Total
Estimation
(seconds)

Real Average
Execution

Time
(seconds)

Percentage of
Error

1 30.818 17.772 48.590 48.590 0%

2 15.409  8.309 23.718 26.603 10.84%

3 10.273 5.647 15.919 15.922 0.02%

4 7.705 4.159 11.863 12.004 1.17%

5 6.164 3.3605 9.524 14.582 34.69%

Table 6: Estimated and real execution times for a Software Structure with 1 manager and 4 workers

Number of
Processors

Software
Structure

contribution
(seconds)

Simulated
Non-structural

contribution
(seconds)

Total
Estimation
(seconds)

Real Average
Execution

Time
(seconds)

Percentage of
Error

1 45.340 17.643 62.983 62.983 0%

2 22.670 8.912 31.582 36.73 14.01%

3 15.113 5.926 21.039 22.688 7.27%

4 11.335 4.475 15.810 22.572 29.96%

5 9.068 3.600 12.669 15.923 20.44%

6 7.556 2.998 10.554 15.869 33.49%

Table 7: Estimated and real execution times for a Software Structure with 1 manager and 5 workers
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• The total times obtained from the even-driven simulation are numerically representative only for the non-
structural components contribution, whose distribution is affected by the Software Structure, but they do not
account for its contribution. Thus, the expression for the total execution time considering the values from the
event-driven simulation covers only the contributions from Software Site and non-structural components, as
follows:

• Both, event-driven simulation and real program were executed using exactly the same hardware and
environment resources, so we can assume that the time due to Software Site component contribution is the
same for both executions. Substracting from the expression for total execution time in the real program the
obtained event-driven simulation values, the following is obtained:

This expression means that it is possible to obtain the estimation of the contribution due to the Software Structure
for each configuration in concurrent execution by directly substracting the simulation times from the real execution
times. Table 2 shows the estimations of the Software Structure contribution in the concurrent case for different
number of components.

Now, using the Software Structure and non-structural contributions from the scale-model, it is possible to obtain
estimations of total execution times for different parallel variations of the program. Software Site is changed for
each case, while Software Structure and non-structural components are kept unchanged. In order to corroborate
and evaluate the accuracy of the Architectural Performance Model, the estimations are compared with the actual
average total execution times, obtained from executing and measuring several times the real program. For each
case, the percentage of error is calculated, as shown in Tables 3, 4, 5, 6, and 7.

Number of
Workers

Software Structure
contribution

1 7.929

2 7.684

3 7.599

4 7.705

5 9.068

Table 2: Estimated Software Structure contribution in concurrent execution

Number of
Processors

Software
Structure

contribution
(seconds)

Simulated
Non-structural

contribution
(seconds)

Total
Estimation
(seconds)

Real Average
Execution

Time
(seconds)

Percentage of
Error

1 7.929 17.387 25.317 25.317 0%

2 3.965 8.293 12.258 15.471 20.77%

Table 3: Estimated and real execution times for a Software Structure with 1 manager and 1 worker

TSim TSite TNonStr+=

TReal TSim– TSite TStr TNonStr+ +( ) TSite TNonStr+( )–=

TSite TStr TNonStr TSite– TNonStr–+ +( )=

TReal TSim– TStr=
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Let the two input maps be calledM1 andM2. The solution goes through all the polygons belonging toM1, and for
each one of them, the goal is to find all the intersections with any polygon inM2. The key to efficiency is to limit
the part ofM2 that has to be looked at to find these overlaps (Winderet al., 1996).

3.2. Experimentation Results

After carrying out the steps to obtain the Architectural Performance Model, both event-driven simulation and real
program are executed concurrently on a single processor, and measured for different component configurations
modifying the number of workers. The performance behaviour in terms of average total execution times measured
in the real program and estimated by the simulation program, considering different number of worker components,
are presented in Table 1.

Notice that simulated times reflect a similar trend to the measurements on the real execution. The tendency can be
observed more clearly in Figure 4, which shows the average execution characteristic for both real and simulation
programs.

Now, observing the difference between the partial results, let us consider the following:

• The total times obtained from measuring the processing, communicating and idling times of the real program
is composed of all three contributions from Software Site, Software Structure and non-structural
components. Thus, the expression for the total execution time for the real program remains as:

Number of
Workers

Real Average
Execution Time

(seconds)

Simulation
(seconds)

1 25.317 17.387

2 16.183 8.499

3 13.260 5.661

4 12.147 4.443

5 12.597 3.529

Table 1: Real and simulated average total execution times in concurrent execution

Figure 4. Average execution characteristic for real and simulation
programs in concurrent execution

TReal TSite TStr TNonStr+ +=
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3.1. A Case Study: The Polygon Overlay Problem

In order to illustrate how experimentation has been carried out to verify the accuracy of the Architectural
Performance Model approach, an example based on the Polygon Overlay Problem (Wilson & Lu, 1996) is used.
This section briefly describes the problem and a solution proposed (Winderet al. 1996), based on the Manager and
Workers Architectural pattern (Ortega & Roberts, 1998).

The Problem
Suppose we have two maps, A and B. Each map covers the same area, and is decomposed into a set of non-
overlapping rectangular polygons (Figure 2). Our aim is to overlay the maps, that is, to create a new map consisting
of the non-empty polygons in the geometric intersection of A and B. This is a common problem that frequently
arises in geographical information systems, in which the first map might represent soil type and the second,
vegetation. Their overlay shows how combinations of soil type and vegetation are distributed.

In the general case, polygons in the original maps may be non-convex; their overlay may then contain polygons
which consist of multiple disjoint patches. This is often dealt with by representing each non-convex polygon as the
union of two or more convex polygons. A post-processing stage then re-labels disjoint patches which are to be
treated as a single polygon. However, in order to simplify this problem, it is required that all polygons be non-
empty rectangles, with vertices on a rectangular integer grid [0...N]✕[0...M]. It is also required that input maps
have identical extents, that each be completely covered by its rectangular decomposition, and that the data
structures representing the maps be small enough to fit into physical memory. It is not required that the output map
to be sorted, although all of the input maps used in this example are usually sorted by lower-left corner (Wilson &
Lu, 1996).

The Solution
A typical parallel programming approach for this sort of problem is to built a Manager-Workers system. We have
a set of workers which do the actual polygon overlaying, a manager that, on request, gives pieces of work to the
workers. Once processing is finished, the manager is sent the results by the workers (Winderet al., 1996). The
communication pattern among the active objects, using an architectural notation proposed by Bennett (1997), is
shown in Figure 3. The manager and workers are all made active objects.

Figure 2. Example of Polygon Overlay.

Figure 3. Architectural representation for the Manager and Workers pattern.
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Software Architecture as Software Site, Software Structure, and the rest as non-structural software components
(Ortega & Roberts, 1999b). The expression for total execution time can be presented in terms of these groups of
components as:

Rearranging terms, the total execution time for any parallel program is obtained as function of the three
contributions, as follows:

Where , , and  are respectively the contribution times of the Software Site, Software Structure,

and the non-structural components. According to this expression, the total execution time of a parallel program
contains contributions of each one of the groups of components. Our aim here is obtaining a close representation
of the contribution of Software Structure and the non-structural components, and verify their use for a total
estimation of performance by experimentation.

3. Experimentation

The Architectural Performance Models for performance estimation is based on the assumption that contributions
to the total execution time of a parallel program due to Software Site, Software Structure and non-structural
components are independent from each other from. Therefore, the average contribution of Software Structure
depends exclusively on the structural organization schema for execution and communication, and can be obtained
by experimentation. However, in order to develop the experiments, let us consider the following assumptions to
reduce model complexity.

• The simulation model is based on the Parallel Virtual Machine (PVM) standard (Geistet al., 1994).
Therefore, low-level hardware details such as memory hierarchies and the topology of processor
interconnection network are considered to be solved by the PVM environment.

• Scale analysis is used to identify insignificant effects that can be ignored in the analysis. For example, if a
program consists of an initialization step followed by several thousand iterations of computations, and if
initialization is very expensive, then we consider only the computation step in our analysis.

• Empirical studies are used to calibrate simple component models rather than developing more complex
models from first principles.

Experimentation using execution-driven simulation seems to be the option to determine the effectiveness of our
approach. Execution-driven simulation is the recommended option when program execution time has no simple
dependence on input data, which seems to be the case of Software Structure. In execution-driven simulation, every
parallel program task is modelled by a component simulator containing a parameters obtained from actual
execution of the real parallel program. During the simulation, the parallel program is actually executed (i.e., it is
not simulated). Nevertheless, the behaviour of the Software Structure — communications and interconnections
organization — and the non-structural components are still simulated. Finally, the execution times measured from
the real program and those obtained from the simulation are compared. In order to observe the contribution of
Software Structure, changes adding or substracting components are made in both, real program and simulation,
comparing results. To confirm the accuracy of our approach based on obtaining of Software Structure contribution
in concurrence, other group of executions and simulations are performed, maintaining Software Structure
unchanged, but modifying the hardware, aiming to verify the accuracy of this method for different parallel
hardware configurations.

T
1
N
---- TSite TStr TNonStr+ +( )
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TSite TStr TNonStr+ +( )
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obtaining the performance contribution of Software Structure. However, it can be proven useful for a wide range
of parallel design problems.

Let us define performance of a parallel program as the time that elapses from when the first component starts
executing on the problem to when the last component completes execution. Performance refers to the
responsiveness of the parallel system — the time required to respond to events, or the number of events processed
in some time interval (Smith & Williams, 1993; Foster, 1994; Basset al., 1998). This definition is not entirely
adequate for all parallel computers, but it is sufficient for our actual purposes.

Traditionally, performance models considered for parallel programming specify a metric such as execution time
as a function of problem size, number of processors, number of tasks, and other algorithm and hardware
characteristics (Foster, 1994; Culleret al., 1997). However, for software modelling purposes, this performance
models can be simplified, assuming that during execution, each software component is processing,
communicating, or idling, as illustrated in Figure 1.

Let , , and  be the time spent processing, communicating, and idling, respectively, on theith

component. Hence, average total execution timeT can be defined as the sum of computation, communication, and
idle times on an arbitrary componentj (Foster, 1994; Culleret al., 1997),

or as the sum of these times over all components divided by the number of componentsN,

The last definition is often more useful, since it is typically easier to determine the total execution time of a parallel
program in terms of the time spent computing, communicating, and idling of individual components.

As our goal is to obtain the Software Structure contribution to a parallel software performance, it is necessary to
develop a mathematical expression that specifies execution time as function of Software Structure and other
contributions. This models should be as simple as possible, while providing acceptable accuracy.

Let us consider that the total processing, communicating and idling times are the result of the contribution of all
the components of the parallel software architecture, which spend their time processing, communicating or idling.
Components are classified and grouped depending on their particular objective and their rate of change in the

Figure 1. Space-Time View of a PVM parallel program of 6 software components.
Each component spends its time processing, communicating, or idling.
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2. Architectural Performance Model

Architectural Performance Modelling is characterised by a low simulation overhead, thanks to the adoption of
models of program components which are at a higher level of abstraction. The parallel software programs
simulated using the Architectural Performance Model can range from a complete parallel program to a partially
implemented program design. The simulation of the whole system, using the available information about hardware
and software, makes it possible to obtain estimates of the parallel system performance.

The Architectural Performance Model combines components representing Software Structure along with
component simulator objects representing the internal tasks performed by each component in the program.
Basically, a complete parallel software architecture consists of a network of interconnected components. Each
component is simulated using a component simulator object, which has been implemented using a Markovian
generator kernel, giving estimates of the component execution (Ortega & Roberts, 1999a). The component
simulator objects are connected following the Architectural Pattern used to define the Software Structure, setting
up a kind of “scale-model” representative of the complete parallel software application. The effect of Software
Structure then can be taken into account by means of predefined components sharing the same physical medium,
which generate a given statistical contribution of the Software Structure to the performance of the parallel Software
Architecture.

2.1. Simulation

A typical Architectural Performance Model simulation consists of the following phases:

1. The Software Structure modelling code is built with information from the Architectural pattern. Code can be
supplied either as a complete parallel program or as a skeleton of code representing the structural relations
among components. Component computations have been replaced by a component simulator that takes into
account the time parameters spent or required in the actual code, setting up a concurrent scale-model version
of the parallel program.

2. The simulation is performed by executing the scale-model program produced. A suitable number of
executions to record the events occurring in a specific point of the scale-model are obtained.

3. The information on system performance produced during the simulation is examined. As component
simulators produce a trace of program time execution in the form of processing, communicating and idling
time, it is also possible to collect more in-depth information about the parallel program behaviour and
system performance off-line. If the obtained performance is not satisfactory, changes to the Architectural
Performance Model can be applied, ranging from adding or substracting components, test for other
architectural patterns or configurations, or considering different hardware allocation strategies. This entails
repeating all the previous steps several times.

A point that is worth discussing in more detail is how a parallel program is modelled by Architectural Performance
Models. The parallel program behaviour is modelled at task level by a set of component simulators, which model
the time of tasks executing on every component. For the sake of simulation accuracy, these simulators should
reproduce as closely as possible the distribution of sequence and timing of the run-time requests expected from the
actual program. A way to obtain this is to measure the execution time between communications, and the time of
communications themselves. The time parameters are then estimates found by direct measurement under suitable
test conditions or through statistical and/or analytical models (Sötz, 1990; Smith & Williams, 1993; Foster, 1994).
Another possible approach relies on the examination of the source code, analysing the performance behaviour of
each task on the particular sequential or parallel computer where it will actually be executed (Mohr, 1990; Smith
& Williams, 1998).

2.2. The Basic Mathematical Model

A good performance model is able to explain available observations and predict future circumstances, while
abstracting unimportant details. However, conventional computer system modelling techniques, which typically
involve detailed simulations of individual hardware components, introduce too many details to be of practical use
to parallel program designers. In this section, we introduce a performance modelling technique that provides an
intermediate level of detail. This technique is certainly not appropriate for all purposes: it is specialized for



Page 1

Architectural Performance Models
Estimating the Contribution of Software Structure

to the Performance of a Parallel Software Architecture
Jorge L. Ortega-Arjona and Graham Roberts

Department of Computer Science, University College London
Gower Street, London WC1E 6BT, U.K.

{J.Ortega-Arjona, G.Roberts}@cs.ucl.ac.uk

Abstract
Parallel System programming requires sophisticated and cost-effective performance estimation techniques for
successful development. Architectural Performance Models, based on Architectural patterns, a component simulator
and a performance analysis, are presented here as an approach to estimating the performance of parallel applications,
by obtaining the contribution to performance from their Software Structure. This paper presents a brief introduction to
the Architectural Performance Models, their development and use, and an experimental evaluation using a case study
in order to validate the accuracy of their estimations.
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1. Introduction

Parallel Systems Programming allows the exploitation of a number of computing resources performing
simultaneous activities to achieve a common objective. By its nature, Parallel Systems Programming requires extra
effort from the software developer, because of the increased complexity that comes from programming several
resources executing simultaneously. Furthermore, as Parallel Systems Programming is considered a means for
improving performance — viewed here as the reduction of execution time— the software design has to take into
account sophisticated and cost-effective practices and techniques for performance measurement and analysis. In
particular, it is of great practical interest to obtain performance data during the design stages and before
implementation, since this enables the software developer to carefully choose the order and organization of
computations and communications between components.

Such considerations are among the premises of the Architectural Performance Model. An Architectural
Performance Model is based on Architectural Patterns as descriptions of the Software Structure of parallel
programs, a component simulator, and a performance analysis of parallel applications, executing on the Parallel
Virtual Machine (PVM) standard (Geistet al., 1994).

The definition of Software Structure comes from the idea that the Software Architecture of a program can be
considered in terms of groups of components, which have a specific responsibility and different rate of change
during the program’s lifetime. This idea was inspired by the concept of the“Layers of Change” (Brand, 1994). In
a previous paper, we have defined the groups of components as Software Site, Software Structure, Software Skin,
Software Services, Software Space Plan and Software Stuff (Ortega & Roberts, 1999b). For the purposes of the
present work, let us consider only the definitions for Software Site and Software Structure:Software Site is defined
as the set of software components associated with hardware and software environment around the program.
Software Structure is the set of components that represent the fundamental structural organization schema for
execution and communication. Finally, let us consider as non-structural components all other groups that,
complementary to Software Site and Software Structure, define the Software Architecture of a program.

In our opinion, the role that simulation techniques can play in parallel software development has not yet been fully
recognised. Simulation based methods and tools can help manage complexity of software development for parallel
systems. In this context, the fundamental advantage of simulation is flexibility. Simulation methods and tools make
it possible to compare the behaviour of different Software Structures on the same hardware platform, to assess the
effect of different organizations, changes on components, or even to study the performance of a parallel program
on several existing, required, or hypothetical computing situations. Simulation methods and tools require neither
the oversimplifications which are commonly used to deal with complex hardware/software systems through
analytical models, nor the availability of fully developed software program. However, it should be noted that
accurate simulations are in general computationally expensive (Zelkowitz & Wallace, 1998).


