Abstract

Curb your objects!
An Orthodox Form for C# Classes

Roberto Jimeno
<roberto.jimeno@gmail.com>
PhD first level student
Graduate Center, City University of New York
Computer Science Department
356 Fifth AvenueNew York, NY 10016

M.S. Jorge L. Ortega-Arjona
<jloa@fciencias.unam.mx>
PhD candidate
Department of Computer Science, University College London.
Currently at Facultad de Ciencias, Departamento de Matematicas,
Cubiculo 023 . Circuito Exterior de Ciudad Universitaria UNAM.
México D.F. C.P. 04510.

System.Object

+0bject()

+Equals(0Object): Boolean

+Equals (Object,0bject) . Boolean
+GetHashCode() @ Int32

+GetType() : Type
+Referencefquals(0Object.0Object) : Boolean
+ToString(): String

#Finalize(): Void

#MemberwiseClone(): Object

IDisposable ICloneable
+Dispose(): Void +Clone(): Object

4

Obj
-ManagedResource
+lUnmanagedResource

+0bj ()
-0bj (0bj)
+<<ICloneable>> Clone(): Object b = = = -
+Equals(0Object): Boolean
+GetHashCode(): Int32
-Dispose(Boolean): Void

- = = = |+<¢<IDisposable»> Dispose()
#~0bj ()

Drawing 1: Class diagram of the solution.

The Orthodox Form for C# Classes (OFC#C) is an idiom
proposed for the C# programming language which intends to
provide its classes with a basic structure that assures a predictable
behavior for creation, copy and destruction of instances.

When classes in C# are written it is desirable built
them in such a way that their instances produce
objects which behave in predictable ways.

Programmers tend to make lake mistakes when their



objects behave at run time in the same way the they expects them
to behave at write/compile time.

Keywords

C# programming language, .NET, software pattern, idiom.

Introduction

The Orthodox Form for C# Classes (OFC#C) is an idiom
proposed for the C# programming language which intends to
provide its classes with a basic structure that assures a predictable
behavior for creation, copy and destruction of instances. Such a
basic structure is comparable C++'s Orthodox Canonical Form
(OCF) proposed by James Coplien and Java's Canonical Object
(CO) by Bill Venners.

This idiom's objective is to provide a general scheme to take as a
base to write classes in C#. When classes in C# are created it is
desirable to produce objects which behave in predictable ways.
Classes built with this structure will provide their instances with a
run-time behavior which is clearly defined at compile-time.

As a whole, all common behaviors on C# objects constitute a set
of services which should be built into most classes. This idiom
intends to answer the question: What do the C# programmer need
to code (as a minimum) so that any instance's behavior handles
the services common to all objects?

It is suggested to adopt this idiom on the proper practice of C#
programming, or if a set of guidelines is

desirable for a programmers team in an organization, this idiom
might be included as part of the guidelines. Virtually all classes
written as part of a library, module, component or framework
should be modeled after this idiom.

OFC#C's expression as a software pattern

Name Orthodox Form for C# Classes.

Related patterns Orthodox Canonical Form, Canonical Object,
Dispose pattern, using pattern.

Context The OFC#C should be used during creation of any non-
trivial class on a C# program, unless there is a specific reason for
not using it.

Problem Frequently, default methods provided by the compiler
or the runtime system cause objects to
behave in unpredictable, inconsistent or inefficient fashion.

Solution The programmer should provide implementations for
certain methods of key importance so all objects behave in a

predictable and consistent fashion under any
conditions.

* Solution structure — Any non-trivial class requires
to define (or override) at least the following
members (shown grouped)

* Creation group.
* Default constructor.
* Copy and cloning group.

* Copy constructor and Clone ()
for reference types.

* Implement ICloneable
interface for producing deep copies.

» Comparison group.

* Replace Equals ().

* Replace GetHashCode () .
* Destruction group.

* Implement IDisposable
interface.

« Define the class destructor.

Drawing I shows the class diagram of the solution.
Class Obj is a simple example of a class which uses
the OFC#C. By comparing classes Object and Obj on
the diagram it is possible to observe which are all
System.Object's methods are overridden by Obj
class. Information regarding interfaces, methods and
their visibility is also shown.

* Solution's dynamic — It is convenient to classify
solution's dynamics in two categories:

* External dynamics: When an object
conforming to the OFC#C is created, its
default constructor warrants initialization to
a predictable and consistent state.
Afterwards the object can be assigned or
copied, always producing consistent
instances in and predictable way. Orthodox
objects (i.e. Instances of classes conforming
with the OFC#C form) can be cloned using
a copy mechanism to go along with the
object's semantics, and also be compared
according to that semantics by using



Equals (), besides they can be utilized in other useful
ways. When convenient, the object can be stored
persistently, so its life time transcends the life time of
the process which created it. Finally, this objects are
prepared to release their resources once they become
redundant for the program.

o Internal dynamics: A destructor method of a C# class
produces a protected method named

Finalize () which overrides the Finalize ()
method inherited from System.Object. When the
IDisposable interface is implemented, there is a
public parameter-less method named Dispose (),
which calls the protected method

Dispose (Boolean) for the class. Also, the copy
constructor (whose visibility is private) can be used by
the public method Clone () to produce copies of
objects. Likewise, it is frequent for the Clone ()
method to internally use the protected method
MemberwiseClone () to perform shallow copies
Finally, the Equals () method can call

other overridden Equals () methods from other classes
to determine if the present object (this) is equal to
other of the same type.

Example The class shown below complies with the OFC#C end
is part of a real program (a program used to organize
bibliographic references).

// This class sticks to the OFC#C and is

// part of a program which verifies

// bibliographic references on LyX/TeX/LaTeX
// documents.

using System;
// Has no managed resources, so does not
// implement IDisposable nor a destructor;

// nonetheless it adheres to the OFC#C.

class BibRef
{

ICloneable

protected readonly string sId; // Due to its
// being readonly it can only be modified
// from within a constructor.

/1177777777777 777/777/7/77/// Creation group.

// Default constructor.

BibRef ()

{
// The default constructor is private,
// which impedes its use from outside
// the class (reducing the chance of

}

// errors) .

// Builds the object from a
// character string.
public BibRef (string s)

{

}

sId=s;

/////////// Copy and cloning group.
// Copy constructor.
BibRef (BibRef r)

{

}

this.sId=r.sId;

// This method uses the copy
// constructor.
public Object Clone ()

{

}

return new BibRef (this);

///////////////// Comparison group.
public override Boolean
Equals (Object o)

{

}

// If the object is null then

// 1s different from this

// object:

if(o == null) return false;

// If the type of the object

// is different from this

// object, then they are

// different:

if (this.GetType () !=
0.GetType ())

return false;

// Now a field by field

// comparison is performed.

// For this simplistic

// example there is only one

// field to check:

if(this.sId !=
((BibRef) o) .sId)

return false;

// The objects are equal:

return true;

public override Int32 GetHashCode ()

{

// The algorithm uses the
// readonly field sID.
Int32 hc=0;

for (Int32 1=0;



i<sId.Length;

i++)
{
hc+=(sId[i] .GetHashCode () * (i+1));
}

return hc;

}

// Equals (), GetHashCode() and ToString()
// can also be called without explicit

// intervention from the programmer. (v.g.
// by WriteLine())

public override string ToString()

{

return sId;

}

} // End of class BibRef

Due to space constraints the complete program is not shown here,
but only a snippet instead.

Consequences

» Advantages: A class built with this features produce objects

which are easier to control than those not conforming
with this idiom. Therefore, objects designed in this
way turn out to be flexible (simple to understand, use
and change) and contribute for the code to be easy to
modify, given the fact that they are readily adaptable
in any way most objects are often adapted.

* Disadvantages: Having so many points to consider,
the programmer ought to be careful in order to avoid
making mistakes. A quite frequent error is to write a
hash function (Get HashCode () ) which is either
simply wrong or at least slow.

References

[JIMRO04] Jimeno, Roberto (2004). Una Forma
Ortodoxa para las Clases en C#. UNAM. Mexico.

[ORTIJ96] Ortega Arjona, Jorge Luis (1996). Estudio
y evaluacion de la programacion orientada a objetos.
UNAM. Mexico.

[RICJ02] Richter, Jeffrey (2002). Applied Microsoft
NET Framework Programming. Microsoft Press.
USA.



