Applying Design Patterns for
Communication Components
Communication between Manager and Worker
components for an N-body Simulation

Jorge L. Ortega Arjona
Departamento de Matematicas
Facultad de Ciencias, UNAM.

jloa@ciencias.unam.mx

Abstract

This paper presents the application of the communication components
for a parallel version of the N-body simulation. The method used here
makes use of Design Patterns for Communication Components, which
take information from the Problem Analysis and Coordination Design,
and provide elements about its implementation.

1 Introduction

Parallel programming is characterized by a growing set of parallel hardware
architectures, programming paradigms, and parallel languages. This situation
makes difficult to propose just a single approach containing all the details to de-
sign and implement communication components for all parallel software systems.
Hence, the Design Patterns for Communication Components [4, 6] are proposed
as an effort to help a programmer to design the communication components
depending on particular characteristics and features of the communication to
be carried out between the processing components, when designing a parallel
program.

The Design Patterns for Communication Components focus on describing
and refining the communication components of a parallel program, by describ-
ing common programming structures used for communicating, exchanging data
or requesting operations, between processing components. Their application di-
rectly depends on the Architectural Pattern for Parallel Programming [2, 5, 6]
which they are part of, detailing a communication and synchronization func-
tion as a local problem, and providing a form as a local solution of software
components for such a communication problem.

When designing the communication components of a parallel program, it is
important to think carefully how communication and synchronization are to be
actually carried out by those communication components.

However, design patterns for communication are not applied in isolation. A
parallel program is the result of applying several patterns at different levels of de-
sign and implementation. The application of a whole parallel program requires
applying more than a single pattern. Different patterns are applied at different
levels of design. Designing and programming a parallel software system requires,
then, several patterns at least at three levels of design: coordination, commu-
nication, and synchronization. Several different patterns have been proposed
for each one of these levels: architectural patterns for coordination, design pat-
terns for communication, and idioms for synchronization [6]. The present paper
preciselly focuses on the second level of design: communication design.

In this paper, it is presented the application of the Remote Rendezvous pat-
tern for designing the communication components of a parallel program that
performs an N-body simulation. For this problem, the paper “Applying Ar-
chitectural Patterns for Parallel Programming. An N-body Simulation” [7] has
already presented the Manager-Workers pattern for designing the coordination
level of the whole parallel program. Here, this paper continues and complements
the design of the whole parallel program, by applying the Remote Rendezvous
design pattern for continuing the design of the whole parallel program that
performs the N-body simulation. The design development here is part of the
method for designing parallel programs as presented in the book “Pattern for
Parallel Software Design [6]. However, in this paper, only the Communication
Design is specifically performed to solve the communication requirements of the
Manager-Workers-based N-body simulation, making use of Design Patterns for
Communication Components [4, 6], taking information from the architectural
decisions in [7], and providing elements about the design and implementation
of communication components for the N-body simulation.

2 The Manager-Workers pattern: the N-body
simulation case

In the paper “Applying Architectural Patterns for Parallel Programming. An
N-body Simulation” [7], the Manager-Workers Architectural Pattern has been
selected as a viable solution for an N-body simulation. Now, in order to apply
the Design Patterns for Communication Components for developing the com-
munication components for this example, some information related with the
Manager-Workers pattern, the parallel platform, and programming language is
required. This information is summarized as follows.

2.1 The Manager-Workers pattern

e Description of the coordination. The Manager-Workers (MW) ar-
chitectural pattern uses activity parallelism to execute the N-body sim-
ulation, allowing the simultaneous existence and execution of more than
one worker components through time. Each one of these instances at the
same time obtain the force summation and time integration for a single
body, and during a time step. In a parallel system like this, the N-body
simulation involves the distribution and execution of data for several time
steps. Each time step starts by distributing the data among all workers,
and finish only when all workers provide the manager with the new state
of its correspondent body [3, 7, 6].

e Structure and dynamics

1. Structure. Using the Manager-Worker architectural pattern for an N-
body simulation, all bodies information is distributed by a manager
component, and operated by workers as conceptually-independent
components. Each worker performs the same operations to obtain
an update of the state of a body, at a time step. So, the opera-
tions defined for a body are simultaneously performed. An Object
Diagram, representing this structure is shown in Figure 1 [7, 6]. No-
tice that this organization effectively allows to distribute the data
of all bodies among worker components, as previously described in
the Problem Analysis [7], so each body’s new state can be computed
independently from the others.

manager:Manager

[

worker[0]:Worker worker[1:Worker | ------ worker[N-1]:Worker

Figure 1: Object Diagram of MW for solving the N-body simulation.

2. Dynamics. A typical scenario is used here to describe the basic run-
time behavior of this pattern when applied to the N-body simulation.
All components, whether manager or workers, are active at the same
time, distributing and processing the information of different bodies,
and assemlbling an overall state of the system at each time step. A
single time step is described in Figure 2 [7, 6].

The processing and communicating scenario is as follows [7, 6]:

manager:Manager worker[0]:Worker worker[1]:Worker | ----- worker[N-1]:Worker

o

L sist[] forceT()
move()

L sistl forceT()

move()
L sist[]
sist[0]

]

sist[1]
sistiN-1 —(

¥ 1]

Figure 2: Sequence Diagram of MW for the N-body simulation.

— All participants are created, and wait until a data array of all
the bodies sist[] is provided to the manager. When such data
is available to the manager, it sends all the array by request to
each waiting worker.

— Each worker receives a copy of the array. Notice that the
th worker is associated with obtaining the force summation and
the time integration for the ith body. So, every worker starts
processing an operation forceT () and move (). These operations
are independent of the operations on other workers. When the -
th worker finishes processing, it returns a result of only the state
of the #-th body to the manager. Once all results are received by
the manager, and if the simulation is to be continued for further
time steps, each worker requests again for the array representing
all the state of all the bodies, and the process repeats.

— For each time step, the manager is usually replying to requests
of the array from the workers or receiving their partial results.
Once all time steps have been processed, the manager assembles
a total result from the partial results and the program finishes.
Any non-serviced requests of data from the workers are ignored.

3. Functional description of components. The processing and communi-
cating software components for simulating the N-body problem using
the MW pattern are described as follows [7].

— Manager. The responsibilities of a manager are to create a

number of workers, to distribute work among them, to start up
their execution, and to assemble the overall simulation result
from the sub-results from the workers.

— Worker. The responsibility of a worker is to seek for the array of
bodies, to implement the operations of force summation and time
integration on a single body, and to perform such operations.

2.2 Information about parallel platform and programming
language

The parallel platform available for this parallel program is a cluster of com-
puters, specifically, a dual-core server (Intel dual Xeon processors, 1 Gigabyte
RAM, 80 Gigabytes HDD) 16 nodes (each with Intel Pentium IV processors,
512 Megabytes RAM, 40 Gigabytes HDD), which communicate through an Eth-
ernet network. The parallel application for this platform is programmed using
the Java programming language [7].

3 Communication Design

3.1 Specification of Communication Components

e The scope. This section takes into consideration the basic information
about the parallel hardware platform and the programming language used,
as well as the MW pattern as the selected coordination for solving the N-
body simulation. The objective is to look for the relevant information for
applying a particular design pattern as a communication structure.

Based on the information about the parallel platform (a distributed mem-
ory cluster), the programming language (Java) and the description of soft-
ware components for the MW pattern presented in the previous section,
the procedure for selecting a Design Pattern for the Communication Com-
ponents for the N-body simulation is presented as follows [4, 6]:

1. Consider the architectural pattern selected in the previous step. From
the MW pattern description, the design patterns which provide com-
munication components and allow the behavior as described by this
architectural pattern for a coordination are the Local Rendezvous
pattern and the Remote Rendezvous pattern [4, 6].

2. Select the nature of the communicating components. Considering that
the parallel hardware platform to be used has a distributed memory
organization, the nature of the communicating components for such
memory organization is considered to be message passing or remote
call.

3. Select the type of synchronization required for the communication.
Normally, the communication between software components that act

as manager and two or more workers makes use of a synchronous
communication. In each synchronous communication, a worker com-
ponent calls to the manager component and blocks, waiting for re-
ceiving a response from it. Once a result is received from all workers,
the manager component either assembles the global result, or contin-
ues distributing work among the workers by receiving further calls.

4. Selection of a design pattern for communication components. Con-
sidering (a) the use of the MW pattern, (b) the distributed memory
organization of the parallel platform, and (c) the use of synchronous
communications, therefore the Remote Rendezvous pattern is
proposed here as the base for designing the communications between
manager and each worker. Let us consider the Context and Problem
sections of this pattern [4, 6]:

— Context: ‘A parallel program is to be developed using the Man-
ager Workers architectural pattern (...) as an activity parallelism
approach in which data is partitioned among autonomous pro-
cesses that make up the processing components of the parallel
program. The parallel program is to be developed for a dis-
tributed memory computer (although it also can be used on a
shared memory computer). The programming language to be
used includes synchronization mechanisms for interprocess com-
munication through remote procedure calls’.

— Problem: ‘A means of communication is required that allows
processes to read and write data by sending and receiving data
objects from the manager (...), within a distributed memory sys-

tem’.

From both these descriptions, it is noticeable that for the MW pat-
tern, on a distributed memory parallel platform, and using Java as
the programming language, the choice for developing the communi-
cation components for this example is the Remote Rendezvous
pattern. The use of a distributed memory parallel platform implies
using remote calls, and it is known that the Java programming lan-
guage counts with the elements for developing such calls. Moreover,
this calls consider a synchronous communication scheme between a
worker and its manager. Therefore, this completes the selection of
the Design Pattern for Communication Components for the N-body
simulation. The design of the parallel software system continues us-
ing the Remote Rendezvous pattern’s Solution section as a starting
point for communication design and implementation.

e Structure and dynamics. This section takes information of the Remote
Rendezvous design pattern, expressing the interaction between its software
components that carry out the communication between parallel software
components for the actual example.

1. Structure. The structure of this pattern applied for designing and
implementing remote call communication components for the MW
pattern is shown in Figure 3 using a UML Collaboration Diagram
[1]. Notice that this component structure allows a synchronous, bidi-
rectional communication between a manager component and a worker
component. The synchronous feature is achieved by using issuing a
call from the manager component, which does wait for the related
worker response [4, 6].

workerl[i]:Worker

1. makeRequest Wi t Repl y() 4. makeRepl y()

:RemoteProcedureCall

2. getRequest () 3. Reply

manager:Manager

Figure 3: UML Collaboration Diagram of the Remote Rendezvous pattern used
for synchronous remote calls between the manager and a worker of the MW
solution to the N-body simulation.

2. Dynamics. This pattern actually performs a remote call through the
available distributed memory parallel platform. Figure 4 shows the
behavior of the participants of this pattern for the actual example.
In this scenario, a group of bi-directional, synchronous remote calls
is carried out, as follows:

— The worker requests data from the manager, so it issues a request
operation to its remote procedure call component. This redirects
the call to the manager through a socket, synchronizing the call
so the worker remains blocked until it receives a response. If it
made a read request for data, it waits until the data is made
available: if it made a write request, the worker blocks until it
receives an acknowledgement from the manager.

— The manager receives the request. If it is a request for data,
it makes the data available by issuing a reply to the remote
procedure call component (normally via a socket). On the other
hand, if the request was for a write operation, the manager writes
the partial result at the relevant place within the data structure
and issues an acknowledgement message to the worker, enabling
the it to request more work, if needed.

3. Functional description of software components. This section describes

worker[i]:Worker :RPC manager:Manager

Jl makeRequest Vi t Repl J&

get Request ()

makeRepl y() Reply

.

Figure 4: UML Sequence Diagram for the Remote Rendezvous pattern applied
for synchronous remote calls between manager and a worker of the MW solution
for the N-body simulation.

each software component of the Remote Rendezvous pattern as the
participant of the communication sub-system, establishing its respon-
sibilities, input, and output.

(a)

(b)

Worker. The worker component has responsibility for request-
ing read operations of the set of bodies that act on a particular
body, processing these information, and requesting write opera-
tions of the new position of such a body.

Manager. The manager component has responsibility for main-
taining the integrity and order of the local data structure of bod-
ies, and serving read and write requests from the workers.
Remote procedure call. The remote procedure call compo-
nents in this pattern have two main responsibilities: (a) to serve
as a remote communication and synchronization mechanism, al-
lowing bidirectional synchronous communication between any
two components on different computers that it connects, and
(b) to serve as a remote communication stage for the distributed
memory organization between the components, decoupling them
so that communication between them is synchronous. Remote
procedure calls are normally used for distributed memory envi-
ronments.

4. Description of the communication. The Remote Rendezvous pattern
provides a bidirectional, one-to-one, remote communication subsys-
tem for the N-body simulation, based on the MW pattern. This sub-
system is based on a remote procedure call communication structure.
It describes a communication component that performs a remote calls

to components executing on different processors or computer systems.
Hence, this pattern is used to allow the communication of a body’s
information from the manager to a worker, and viceversa. The man-
ager and all workers are allowed to execute simultaneously. However,
they must communicate synchronously during each remote call over
the network of the distributed memory parallel system.

5. Communication Analysis. This section describes the advantages and
disadvantages of the Remote Rendezvous pattern as a base for the
communication structure proposed.

(a) Advantages
— The integrity and order of the bodies data structure is main-
tained by allowing only point-to-point, bidirectional synchronous
read /write operations between workers and manager.
— The implementation is carried out for a distributed memory
programming environment, although it can also be used on
a shared memory platform.
(b) Liabilities
— The use of synchronous communications between manager
and workers slows the performance of the whole program,
particularly if the number of workers is large and/or they
are located far from the manager, or when communications
are very frequent. This problem can be mitigated by chang-
ing the granularity of the data available in read operations
and/or inserted into the bodies data structure in a write op-
eration.

— Even though this pattern can be used on a shared memory
platform, it tends to make communications between manager
and workers complex and slow due to the number of compo-
nents involved. An alternative would be to use the Local
Rendezvous pattern [6].

4 Implementation

In this section, all the software components described in the Communication De-
sign step are considered for their implementation using the Java programming
language. Here, it is only presented the implementation of the communication
sub-system, which interconnects processing components that implement the ac-
tual computation that is to be executed in parallel [7]. So, the implementation is
presented here for developing the remote rendezvous as communication and syn-
chronization components. Nevertheless, this design and implementation of the
whole parallel software system goes beyond the actual purposes of the present

paper.

4.1 Synchronization Mechanism — Remote Procedure Calls

Based on the Java programming language, an interface for the remote procedure
call that provides the basic functionalities of a synchronization mechanism for
the Remote Rendezvous pattern is presented as follows:

interface RemoteProcedureCall {
public abstract Object makeRequestWaitReply(Object m);
public abstract Object getRequest();
public abstract void makeReply();

The interface RemoteProcedureCall presents three abstract methods which
allow to produce the calls between distributed objects and allow a synchronous
communication between manager and worker components. This interface is
used in the following implementation stage as the basic synchronization element
of the remote call components.

The methods of the interface RemoteProcedureCall are normally used in
a common ‘client-server’ way: the method makeRequestWaitReply() is used
by any ‘client’ component to generate a remote procedure call. It then blocks
until it receives a result. The method getRequest () is used by any ‘server’ to
receive the remote procedure call. Finally, the method makeReply () is used by
the ‘server’ to communicate a result to the client remotely, unblocking it.

4.2 Communication components

Using the interface RemoteProcedureCall from the previous section, here it
is used as the synchronization mechanism component as described by the Re-
mote Rendezvous pattern, in order to be implemented and used within the class
Worker. In the current example, the worker component, acting as a client,
performs the method getRequest(), directed to the manager through the re-
spective remote procedure call component, as follows:

class Worker implements Runnable {
private RemoteProcedureCall rpc; // reference to rpc
private Body [] sist; // Array of bodies to be processed
private Body [] reply; // Result from the movement of this body
private Boolean ack; // Acknowledge for write
public void run(){
rpc = new RemoteProcedureCall(socket s);

while(true){

result = rpc.makeRequestWaitReply(sist); // read sist[]

10

// Perform operations forceT() and move() for the
// actual body correspondent to this worker

ack = rpc.makeRequestWaitReply(reply); // write result

Notice that the RemoteProcedureCall component has a socket as argu-
ment. This means that this component makes use of the network to carry out
its operation, translating the call into a synchronous remote call to the Manager
through the method makeRequestWaitReply (). The Manager that receives this
remote call is made as a multithreaded server, as shown as follows:

class Manager implements Runnable {

private RemoteProcedureCall rpc; // reference to rpc
private Body sist[]; // Data to be processed

private Body reply[]l; // Results from client threads
private Body result[]; // Overall result

private WorkerThread workerThread[];

private int numWorkers;

private Boolean request = false; // is there a request?

//Function called by the rpc
private void getRequest(Body d[]){
data = d;
synchronized (this){
request = true;
this.notify(Q);

}

public void run(){
//Wait until a worker makes a request
while(true){
synchronized (this){
while(!request){
try{wait();}
catch(InterruptedException e){}

}

//Create workerThreads

for(int i=0;i<numWorkers;i++){
workerThread[i] = new WorkerThread(sist);

}

//Wait for all workers termination

for(int i=0;i<numWorkers;i++){
reply[i] = workerThread[i].returnResult();

11

try{
workerThread[i] . join();
}
catch(InterruptedException e){}
}
result = gatherReplies();
rpc.makeReply (result) ;

The Manager is in charge of creating several new WorkerThreads. These
handle that part of the sist to be processed by each call: after creating all of
them, the Manager waits until all the results are received. The Manager then
gathers all results.

Now, the code for the WorkerThread is shown as follows.
class WorkerThread extends Thread{

private RemoteProcedureCall rpc; //reference to rpc
private Body data[]; //Data to be processed

private Body result[]; //Result from the call
private Boolean isResult = false; //Is there result

public WorkerThread(Body data){
this.data = data;
this.start();

}

public void run(){
synchronized(result){
result = doRequest();
isResult = true;
result.notify();
}
private [Jint doRequest(){

rpc = new RemoteProcedureCall(socket);

return rpc.getRequest(data);
}

public Body returnResult(){
synchronized (result){
while(!isResult){

12

try{wait();} //Wait for result become available
catch(InterruptedException e){}
}
}

return result[];

Each WorkerThread acts as a single thread for managing each worker compo-
nents. Notice that the code of the respective RemoteProcedureCall component
again makes use a socket, allowing it to make use of the network to communi-
cate with the worker components.

Each WorkerThread starts working when created, performing the doRequest ()
method and receiving the sist it should send to its respective worker com-
ponent. The WorkerThread does this through a RemoteProcedureCall com-
ponent. Once it receives a result, the WorkerThread sends it back to the
Manager, which assembles the overall result.

5 Summary

The Design Patterns for Communication Components are used here along with
a method for applying them, in order to show how to cope with the requirements
of communication present in the N-body simulation. The main objective of this
paper is to demonstrate, with a particular example, the detailed design and
implementation that may be guided by applying a design pattern. Moreover,
the application of the Design Patterns for Communication Components and the
method for applying them is proposed to be used during the Communication
Design and Implementation for other similar problems that involve the distribu-
tion of data between identical processing components executing on a distributed
memory parallel platform.

6 Ackowledgements

This work is part of an ongoing research in the Departmento de Mateméticas.

References

[1] Fowler, M., UML Distilled. =~ Addison-Wesley Longman Inc., 1997.

[2] J.L. Ortega-Arjona and G.R. Roberts Architectural Patterns for Parallel
Programming, Proceedings of the 3rd European Conference on Pattern
Languages of Programming and Computing (EuroPLoP98), Kloster Irsee,
Germany, 1998.

13

3]

J.L. Ortega-Arjona The Manager-Workers Pattern. An Activity Parallelism
Architectural Pattern for Parallel Programming., 9th European Confer-
ence on Pattern Languages of Programming and Computing 2004 (Euro-
PLoP2004) Kloster Irsee, Germany. 7-11 july, 2004

J.L. Ortega-Arjona Design Patterns for Communication Components, Pro-
ceedings of the 12th European Conference on Pattern Languages of Program-
ming and Computing (EuroPLoP2007), Kloster Irsee, Germany, 2007.

J.L. Ortega-Arjona Architectural Patterns for Parallel Programming. Models
for Performance Estimation, VDM Verlag, 2009.

J.L. Ortega-Arjona Patterns for Parallel Software Design, John Wiley &
Sons, 2010.

J.L. Ortega-Arjona Applying Architectural Patterns for Parallel Program-
ming. An N-body Simulation, Accepted to the 2nd Asian Conference on
Pattern Languages of Programs (AsianPLoP2011), Tokyo, Japan, 2011.

14

