
Applying Idioms for Synchronization

Mechanisms

Synchronizing communication components for the

Hypercube Sorting problem

Jorge L. Ortega Arjona

Departamento de Matemáticas

Facultad de Ciencias, UNAM.

jloa@ciencias.unam.mx

Abstract

The Idioms for Synchronization Mechanisms is a collection of patterns

related with the implementation of synchronization mechanisms for the

communication components of parallel software systems. The selection

of these idioms take as input information (a) the design pattern of the

communication components to synchronize, (b) the memory organization

of the parallel hardware platform, and (c) the type of communication

required.

In this paper, it is presented the application of the Idioms for Syn-

chronization Mechanisms to synchronize the communication components

for the Hypercube Sorting problem. The method used here takes the

information from the Problem Analysis, Coordination Design, and Com-

munication Design, applying an idiom for synchronization mechanisms,

and providing elements about its implementation.

1 Introduction

For the last forty years, a lot of work and experience has been gathered in
concurrent, parallel, and distributed programming around the synchronization
mechanisms originally proposed during the late 1960s and 1970s by E.W. Dijk-
stra [4], C.A.R. Hoare [6, 7, 8], and P. Brinch-Hansen [1, 2, 3]. Further work
and experience has been gathered today, such as the formalization of concepts
and their representation in different programming languages.

Synchronization can be expressed in programming terms as language prim-
itives, known as synchronization mechanisms. Nevertheless, merely including
such synchronization mechanisms into a language seems not sufficient for creat-
ing a complete parallel program. They neither describe a complete coordination

1



system nor represent complete communication subsystems. To be applied ef-
fectively, the synchronization mechanisms have to be organized and included
within communication structures, which themselves have to be composed and
included in an overall coordination structure [11].

Common synchronization mechanisms for concurrent, parallel and distributed
programming can be expressed as idioms, that is, as software patterns for pro-
gramming code in a particular programming language. Several of such synchro-
nization mechanisms have been already expressed as idioms: the Semaphore
idiom, the Critical Region idiom, the Monitor idiom, the Message Passing id-
iom and the Remote Procedure Call idiom [11]. All these idioms are presented
by describing the use of the synchronization mechanism with a particular par-
allel programming language, rather than a formal description of their theory of
operation.

The objective of this paper is to show how the idioms that provide a pat-
tern description of well-known synchronization mechanisms can be applied for
a particular programming problem under development. The description of syn-
chronization mechanisms as idioms should aid software designers and engineers
with a description of common programming structures used for synchronizing
communication activities within a specific programming language, as well as
providing guidelines on their use and application during the design and im-
plementation stages of a parallel software system. This development of imple-
mentation structures constitutes the main objective of the Detailed Design step
within the Pattern-based Parallel Software Design method [11].

When implementing the components that act as synchronization mechanisms
within the communication components of a parallel program, it is important to
carefully consider how both communication and synchronization are carried out
by such synchronization mechanisms. The Idioms for Synchronization Mecha-
nisms (ISM) [11] stand out from many of the sources, references, and descrip-
tions available about how to implement the synchronization between commu-
nicating components (or processes) of a parallel program, with the following
advantages:

• The ISM represent programming constructs that express synchronization
beyond what is properly included within the parallel programming lan-
guage, but giving the impression that their use is actually part of the
parallel language.

• The ISM attempt to reproduce good programming practices, describing
some common programmed structures used to detail and implement the
synchronization required by a Design Pattern for Communication Compo-
nents. Thus, their objective is to help the software designer or programmer
understand and master features and details of the parallel programming
language at hand, by providing low-level, language specific descriptions
of code that are used to synchronize between parallel processing compo-

2



nents. These Idioms, then, help to solve recurring programming problems
in such a parallel programming language. There has been extensive ex-
perience and research about such codification in several different parallel
programming languages, but unfortunately, they have not been related
or linked with general communication structures or overall structures of
parallel programs.

• The ISM are descriptions that relate a synchronization function (in run-
time terms) with a coded form (in compile-time terms). In many parallel
languages, synchronization mechanisms are implemented so their run-time
function has little or no resemblance to the code that performs it. Both,
function and code, are difficult to relate, so the software designer or pro-
grammer cannot notice how communication and synchronization are car-
ried out by coded components. The Idioms here try to relate function and
code, providing dynamic and static information about the synchronization
mechanisms.

• ISM describe common coded programming structures based on data ex-
change and function call. As such, they are guidance about how to achieve
synchronization between processing components. This is a key for the
success or failure of communication. Hence, the Idioms proposed here
are classified based on (a) the memory organization and (b) the type of
communication between parallel components. These issues deeply affect
the selection of synchronization mechanisms and the implementation of
communication components.

• The ISM represent programmed forms as regular organizations of code,
aiming to allow software designers to understand the synchronization be-
tween component, and therefore, reducing their cognitive burden. More-
over, if these idioms are used and learnt, they ease understanding legacy
code, since programs tend to be easier to understand.

• The ISM are based on the common concepts and terms originally used
for inter-process communication [4, 6, 1, 7, 2, 8, 3], and as such, they
are a vehicle to develop terminology for implementing synchronization
components for parallel programs.

Nevertheless, as it is obvious, the ISM present the disadvantage of being
non-portable, since they depend on features of the parallel programming lan-
guage. This does not exclude that several idioms for expressing synchronization
mechanisms can be developed for the different parallel programming languages
available.

2 Specification of the System

In the paper, Applying Architectural Patterns for Parallel Programming. An
Hypercube Sorting [12], the Parallel Layers (PL) Architectural Pattern was se-

3



lected as a viable solution for the coordination within the parallel program that
solves the Hypercube Sorting problem. In order to apply the Idioms for Syn-
chronization Mechanisms (ISM), some information is required related to the PL
Pattern, such as the parallel platform and programming language.

For this implementation, the parallel platform available for this parallel pro-
gram is a cluster of computers, specifically, a dual-core server (Intel dual Xeon
processors, 1 Gigabyte RAM, 80 Gigabytes HDD) 16 nodes (each with Intel Pen-
tium IV processors, 512 Megabytes RAM, 40 Gigabytes HDD), which commu-
nicate through an Ethernet network. The parallel application for this platform
is programmed using the Java programming language.

3 Specification of the Communication Compo-

nents

In the paper Applying Design Patterns for Communication Components. Com-
municating Parallel Layer components for an Hypercube Sorting [13], the Mul-
tiple Remote Call Design Pattern was selected as a viable solution for the com-
munication components of the PL pattern for solving the Hypercube Sorting
problem. In order to apply the ISM, some information related with the Multi-
ple Remote Call Pattern is required as well. This information is summarized as
follows.

3.1 The Multiple Remote Call pattern

The communication components are defined so they enable the exchange of int
values in a bidirectional, one-to-many and many-to-one, remote communication
subsystem, having the form of a tree-like communication structure [13]. Hence,
the Multiple Remote Call pattern has already been previously chosen as an
adequate solution for such communications [9, 12, 13].

• Description of the communication. The Multiple Remote Call (MRC)
pattern provides a bidirectional, one-to-many and many-to-one, remote
communication subsystem for Hypercube Sorting solution, based on the
PL pattern. This subsystem has the form of a tree-like communication
structure. It describes a set of communication components that dissem-
inate remote calls to multiple communication components executing on
different processors or computer systems. These communication compo-
nents act as surrogates or proxies of the processing components. For the
actual Hypercube Sorting problem, they sort local subsets of int variables,
and then, return a sorted array. Hence, this pattern is used to distribute
a part of the whole set to be sorted to other processing components in
lower layers, executing on other memory systems. Both the higher- and
lower-layer components are allowed to execute simultaneously. However,
they must communicate synchronously during each remote call over the
network of the distributed memory parallel system.

4



• Structure and dynamics. This section takes information of the MRC
design pattern, expressing the interaction between the software compo-
nents that carry out the communication between parallel software compo-
nents for the actual example.

1. Structure. The structure of the MRC pattern applied for designing
and implementing communication components of the PL pattern is
shown in Figure 1, using a UML Collaboration Diagram [5]. Notice
that the communication component structure allows a synchronous,
bidirectional communication between a higher- and two lower-layer
components [10, 13].

root:Layer

:MultiThreadServer

:RemoteProcedureCall

:ClientThread

child1:Layer

:ClientThread

child2:Layer

:RemoteProcedureCall :RemoteProcedureCall

Network

Figure 1: UML Collaboration Diagram of the Multiple Remote Call pattern
used for synchronously exchange int values between layer components of the
PL solution to the Hypercube Sorting problem.

2. Dynamics. This pattern actually performs a group of remote calls
within the available distributed memory parallel platform. Figure 2
shows the behavior of the participants of this pattern for the actual
example [11, 13].

In this scenario, a group of bi-directional, synchronous remote calls
is carried out, as follows [13]:

– The root component issues a remote procedure call through a re-
mote procedure call component to the multithread server, which
executes on a different processor within the distributed memory

5



root:Layer :RPC :MultiThreadServer Client:Thread :RPC child1:Layer Client:Thread :RPC child2:Layer

getRequest()
makeRequestWaitReply()

create()

create() doRequest()

doRequest()getRequest()

getRequest()
makeRequestWaitReply()

makeRequestWaitReply()doRequest()

doRequest()

Reply

Reply
makeReply()

makeReply()

Reply

Reply

gatherReplies()

Reply
makeReply()

NETWORK

Figure 2: UML Sequence Diagram for the Multiple Remote Call pattern applied
for exchanging int values between a higher- and two lower-layer components of
the PL solution for the Hypercube Sorting problem.

6



computer. Once this remote procedure call has been issued, the
root component blocks, waiting for a result.

– The multithread server receives the remote call from the remote
procedure call component through the network and creates a
group of client threads to distribute the call to child components
executing on other computers.

– Once created, each client thread is passed part of the data and
transmits it by issuing a remote procedure call through a new
remote procedure call component, one for each client thread. Re-
mote procedure call components have been proposed and used as
communication and synchronization mechanisms for distributed
memory environments: here they are used to maintain the syn-
chronous feature of communications within the whole Parallel
Layers structure, distributed among several processors. Once
every call is issued to remote processes, all the client threads
wait until they receive the results from the remote procedure
call components.

– Once each child component produces a result, it returns it through
the network to the remote procedure call component that origi-
nally called it, and thus to its respective client thread.

– Each client thread passes its result to the multithread server.
Once results have been received from all client threads, the multi-
thread server assembles them into a single result, which is passed
through the network via the remote procedure call component
to the remote root component that originally issued the call.

3. Functional description of software components. This section describes
each software component of the MRC pattern as the participant of
the communication sub-system, establishing its responsibilities, in-
put, and output [13].

(a) Multithread server. The responsibilities of the multithread
server component are to receive remote procedure calls and their
respective data, as arguments, from a higher-layer component,
divide the data and create a client thread for each data subset.
The server then waits for all client threads to produce their re-
sults: once received, the multithread server assembles an overall
result and returns it to the higher-layer component that origi-
nally called it.

(b) Client thread. The responsibilities of each client thread, once
created, are to receive a local call from the multithread server
with a subset of data to be operated on, and to generate a remote
procedure call to a single layer component on the layer below.
Once the called procedure produces a result, the client thread
retrieves it, returning it to its multithread server.

(c) Remote procedure call. The remote procedure call compo-
nents in this pattern have two main responsibilities: (a) to serve

7



as a communication and synchronization mechanism, allowing
bidirectional synchronous communication between any two com-
ponents it connects (which execute on different computers), and
(b) to serve as a remote communication stage within the dis-
tributed memory organization between the components of adja-
cent layers, decoupling them so that communications between
them are performed synchronously. Remote procedure calls are
normally used for distributed memory environments.

4 Detailed Design

In the Detailed Design step [11], the software designer applies one or
more idioms as the basis for synchronization mechanisms. From the
decisions taken in the previous steps (Specification of the Problem
[12], Specification of the System [12], and Specification of Communi-
cation Components [13]), the main objective now is to decide which
synchronization mechanisms are to be used as part of the communi-
cation substructures.

4.1 Specification of the Synchronization Mecha-

nism

– The scope. This section takes into consideration the basic pre-
vious information for solving the Hypercube Sorting problem.
The objective is to look for the relevant information for applying
a particular idiom as a synchronization mechanism.

For the Hypercube Sorting problem, the factors that now affect
selection of synchronization mechanisms are as follows:

∗ The available hardware platform is a cluster, this is, a dis-
tributed memory parallel platform, programmed using Java
as the programming language.

∗ The PL pattern is used as an architectural pattern, requiring
to communicate layer software components [12].

∗ The MRC design pattern is selected for the design and im-
plementation of communication components to support syn-
chronous communication between layers [13].

Based on this information, the procedure for selecting an ISM
for the Hypercube Sorting problem is as follows [11]:

(a) Select the type of synchronization mechanism. The MRC
pattern requires a synchronization mechanism that controls
the access and exchange of int values between a higher-
and two lower-layers as software components that cooperate.
These int values are communicated using basically remote

8



procedure calls. Hence, the idioms that describe this type of
synchronization mechanism are the Message Passing idiom
and the Remote Procedure Call idiom [11].

(b) Confirm the type of synchronization mechanism. The use
of a distributed memory platform, given the previous design
decisions, confirms that the synchronization mechanisms for
communication components in this example may be message
passing or remote procedure calls.

(c) Select idioms for synchronization mechanisms. Communica-
tion between layer components needs to be performed syn-
chronously, that is, the high-layer component should wait
for a response from its two lower-layer components. This
is normally achieved using the MRC pattern. Nevertheless,
this design pattern requires synchronization mechanisms. In
Java, the Remote Procedure Call idiom allows to develop
a synchronization mechanism used here to show how imple-
mentation of the MRC pattern can be achieved using this
idiom.

(d) Verify the selected idioms. Checking the Context and Prob-
lem sections of the Remote Procedure Call idiom [11]:

∗ Context: ‘A parallel or distributed application is to be de-
veloped in which two or more software components execute
simultaneously on a distributed memory platform. Specif-
ically, two software components must communicate, syn-
chronize and exchange data. Each software component
must be able to recognize the procedures or functions in
the remote address space of the other software component,
which is accessed only through I/O operations.’.

∗ Problem: ‘To allow communications between two parallel
software components executing on different computers on
a distributed memory parallel platform, it is necessary to
provide synchronous access to calls between their address
spaces for an arbitrary number of call and reply opera-
tions.’.

Comparing these sections with the synchronization require-
ments of the actual example, it seems clear that the Remoter
Procedure Call idiom can be used as the synchronization
mechanism for the communication. The use of a distributed
memory platform implies the use of message passing or re-
mote procedure calls, whereas the need for synchronous com-
munication between layer components points to the use of
remote procedure calls.

The design of the parallel software system can now continue using
the Solution section of the Remote Procedure Call idiom, directly
implementing it in Java.

9



– Structure and Dynamics.

(a) Structure. The Remote Procedure Call Idiom is used for
implementing the synchronization mechanisms of the com-
munication components for the PL pattern. The Remote
Procedure Call idiom in Java is presented as an interface,
declaring some basic methods on which synchronization is
achieved. Notice that the remote procedure call allows a
synchronization over the two basic distributed components:
a server and a client [11].

interface RemoteProcedureCallInterface{

public abstract Object makeRequestWaitReply(Object m);

public abstract Object getRequest();

public abstract void makeReply();

}

(b) Dynamics. Remote Procedure Calls are used in several
ways as synchronization mechanisms. Here, they are used for
synchronous communication. The Remote Procedure Call
idiom actually synchronizes the operation of the layer com-
ponents over distributed memory. Figure 3 shows a UML
Sequence diagram of the possible execution of the two partic-
ipants of this idiom as the synchronization mechanism within
the MRC pattern. Two parallel software components: a
client c and a server s, which synchronize to exchange
int values. Since they execute on different nodes of the dis-
tributed memory platform, they can only communicate using
the remote procedure call methods.

In this scenario, the synchronization over the remote proce-
dure call is performed as follows:

∗ The communication between software components starts
when the client invokes makeRequestWaitReply(). As-
suming that the remote procedure call component is
free, it receives the call along with its arguments. The
client waits until the remote procedure call compo-
nent issues a reply.

∗ At the remote end, the server invokes getRequest()

to retrieve any requests issued to the remote procedure

call component. This triggers the execution of a proce-
dure within the server, here doRequest(), which serves
the call issued by the client, operating on the actual pa-
rameters of the call.

∗ Once this procedure finishes, the server invokes makeReply(),
which encapsulates the reply and sends it to the remote

procedure call component.

10



c:Client rpc:RPC s:Server

doRequest()

makeRequestWaitReply()

getRequest()

doRequest()

makeReply()

reply

NETWORK

Figure 3: UML Sequence Diagram for the Remote Procedure Call idiom.

∗ Once the remote procedure call has the reply, it
makes it available to the client, which unblocks and con-
tinues. Note how the remote procedure call acts as a
synchronization mechanism between client and server.

– Synchronization Analysis. This section describes the advantages
and disadvantages of the Remote Procedure Call idiom as a base
for the synchronization code proposed [11].

(a) Advantages

∗ Multiple parallel layer components can be created in dif-
ferent address spaces of the computers that make up the
cluster, as a distributed memory parallel platform. They
are able to execute simultaneously, non-deterministically
and at different relative speeds. All can execute indepen-
dently, synchronizing to communicate.

∗ Synchronization is achieved by blocking every client until
it receives a reply from the server. When implementing
remote procedure calls, blocking is more manageable
than non-blocking: remote procedure call implementa-
tions map well onto a blocking communication paradigm.

∗ Each layer component works its own address space, issuing
calls to accessing other layers in a remote address space
via network facilities. No other layer component interferes
during communication.

∗ Data to be sorted is passed as arguments of the remote

11



procedure calls. The integrity of arguments and results is
maintained during all communication.

(b) Liabilities

∗ An implementation issue for remote procedure calls in this
application example is the number of calls that can be in
progress at any time from different threads within a spe-
cific layer component. It is important that a number of
layer components on a computer within a distributed sys-
tem should be able to initiate remote procedure calls and,
specifically, that several threads of the same layer compo-
nent should be able to initiate remote procedure calls to
the same destination. Consider for example a layer A us-
ing several threads to serve remote procedure call requests
from different client layers. Layer A may itself need to in-
voke the service of another layer, say B. It must therefore
be possible for a thread on A to initiate a remote procedure
call to B and, while it is in progress, another thread on A
should be able to initiate other remote procedure calls to
layer B.

∗ It is commonly argued that the simple and efficient re-
mote procedure call can be used as a basis for all dis-
tributed communication requirements of the present Hy-
percube Sorting problem. However, there are variations
that can be applied here. Such variations include (a) a
simple send for event notification, with no requirement for
reply, (b) an asynchronous version of a remote procedure
call that requests the server to perform the operation and
keep the result so the client can picks it up later, (c) a
stream protocol for different sources and destinations, such
as terminals, I/O and so on.

5 Implementation

In this section, the communication components and their respective remote
procedure call components are implemented as described in the Detailed Design
step, using the Java programming language [12, 13]. So, the implementation is
presented here for developing the MRC as communication and synchronization
components. Nevertheless, this design and implementation of the whole parallel
software system goes beyond the actual purposes of the present paper.

5.1 Communication components – Multiple Remote Calls

A class RemoteProcedureCall is used as the synchronization mechanism com-
ponent of several components of the MRC pattern. For example, let us consider

12



the synchronization within the communication between the high-layer compo-
nent and the MultithreadServer, using remote procedure calls [13].

class Layer implements Runnable {

...

private RemoteProcedureCall rpc; // reference to rpc

private Object data; // Data to be processed

private Object result; // Result from the call

...

public void run(){

...

rpc = new RemoteProcedureCall(socket s);

...

while(true){

...

result = rpc.getRequest(data);

...

}

}

}

The MultithreadServer receives this remote call as follows:

class MultithreadServer implements Runnable {

...

private RemoteProcedureCall rpc; // reference to rpc

private int data[]; // Data to be processed

private int subData[]; Data to be distributed

private int reply[]; // Results from client threads

private int result[]; // Overall result

private ClientThread clientThread[];

private int numClients;

private Boolean request = false; // is there a request?

...

//Function called by the rpc

private void performRequest(int d[]){

data = d;

synchronized(this){

request = true;

this.notify();

}

}

...

public void run(){

//Wait until someone make a request

while(true){

synchronized(this){

while(!request){

13



try{wait();}

catch(InterruptedException e){}

}

}

//Create childthreads

for(int i=0;i<numClients;i++){

subdata = getNextSubData(data,i);

clientThread[i] = new ClientThread(subData);

}

//Wait for all child termination

for(int i=0;i<numClients;i++){

reply[i] = clientThread[i].returnResult();

try{

clientThread[i].join();

}

catch(InterruptedException e){}

}

result = gatherReplies();

rpc.makeReply(result);

}

}

...

}

Notice the way both components rely on a remote procedure call component
to exchange and distribute int values as data and results of the computation.
Hence, the successful operation of the communication structure relies on how
the remote procedure call component implements the methods of the interface
RemoteProcedureCallInterface: makeRequestWaitReply(), getRequest(),
and makeReply(). This is shown in the following section.

5.2 Synchronization Mechanism – Remote Procedure Calls

in Java

Based on the Remote Procedure Call idiom and their implementation in the Java
programming language, the basic synchronization mechanism that controls the
communication between root Layer component and the MultithreadedServer
is presented as follows:

import java.net.*;

...

class RemoteProcedureCall extends UnicastRemoteObject

implements RemoteProcedureCallInterface {

protected Object data;

protected Object reply;

14



private MultithreadedServer ms;

...

private MessagePassing in = null;

private MessagePassing out = null;

...

public RemoteProcedureCall(Socket socket) {

...

this.in = new ObjPipedMessagePassing(socket);

this.out = this.in;

}

public Object clientMakeRequestAwaitReply(Object m) {

send(in, m);

return receive(out);

}

public Object serverGetRequest() {

return receive(in);

}

public void serverMakeReply(Object m) {

send(out, m);

}

...

}

The class RemoteProcedureCall implements a two-way flow of informa-
tion based on sockets, as a one-way flow of information between message pass-
ing sender and receiver. The root Layer component sends an object to the
MultithreadedServer that represents a request, and blocks waiting for the re-
ply. The MultithreadedServer blocks waiting for a request. When it gets the
request, computes the reply, and sends it to the root Layer component, un-
blocking it. As described in the MRC pattern, the MultithreadedServer may
spawn off a thread to handle the request while it gets additional requests.

Moreover, the MultithreadedServer also acts as a call distributor: it waits
for requests from the low-layer components that they are able to do some work.
The MultithreadedServer sends a work command to the layer components,
sending the result back later in another call. Notice that this part of the func-
tionality of the MRC pattern is not shown in this code.

The Remote Procedure Calls here are based on synchronous message passing
rather than asynchronous because buffering is unnecessary and would waste
space; any client blocks on the send in synchronous case and on the receive in
asynchronous case. Hence, there is no need of synchronized methods, because
synchronization is handled inside the send and receive methods. This method
should be synchronized if there are multiple client threads sharing this object.

Finally, it is important to notice that a deadlock possibility exists: if the
server makes another call to serverGetRequest()before calling serverMakeReply()
then this RemoteProcedureCall object is deadlocked (assuming just one client
is using this object, the intended situation) in the sense that the client is blocked

15



on receive(out) and the server is blocked on receive(in). This still needs to
be fixed for the present implementation.

6 Summary

The ISM are applied here along with a method, in order to show how to apply
an idiom that copes with the requirements of the communication components
present in the PL solution to the Hypercube Sorting problem. The main ob-
jective of this paper is to demonstrate, with a particular example, the detailed
design and implementation that may be guided by a selected idiom. Moreover,
the application of the ISM and the method for selecting them is proposed to
be used during the Detailed Design and Implementation for other similar prob-
lems that involve synchronous distribution of data, executing on a distributed
memory parallel platform.

References

[1] P. Brinch-Hansen, Structured Multiprogramming. Communications of the
ACM, Vol. 15, No. 17. July, 1972.

[2] P. Brinch-Hansen, The Programming Language Concurrent Pascal. IEEE
Transactions on Software Engineering, Vol. 1, No. 2. June, 1975.

[3] P. Brinch-Hansen Distributed Processes: A Concurrent Programming Con-
cept., Communications of the ACM, Vol.21, No. 11, 1978.

[4] E.W. Dijkstra Co-operating Sequential Processes, In Programming Lan-
guages (ed. Genuys), pp.43-112, Academic Press, 1968.

[5] M. Fowler, UML Distilled. Addison-Wesley Longman Inc., 1997.

[6] C.A.R. Hoare, Towards a theory of parallel programming. Operating Sys-
tem Techniques, Academic Press, 1972.

[7] C.A.R Hoare, Monitors: An Operating System Structuring Concept. Com-
munications of the ACM, Vol. 17, No. 10. October, 1974.

[8] C.A.R. Hoare Communicating Sequential Processes. Communications of
the ACM, Vol.21, No. 8, August 1978.

[9] J.L. Ortega-Arjona The Parallel Layers Pattern. A Functional Parallelism
Architectural Pattern for Parallel Programming., Proceedings of the 6th
Latin American Conference on Pattern Languages of Programming (Sugar-
LoafPLoP2007), Porto de Galinhas, Pernambuco, Brazil, 2007.

[10] J.L. Ortega-Arjona Design Patterns for Communication Components,
Proceedings of the 12th European Conference on Pattern Languages of Pro-
gramming and Computing (EuroPLoP2007), Kloster Irsee, Germany, 2007.

16



[11] J.L. Ortega-Arjona Patterns for Parallel Software Design. John Wiley &
Sons, 2010.

[12] J.L. Ortega-Arjona Applying Architectural Patterns for Parallel Program-
ming. An Hypercube Sorting, Proceedings of the 15th European Conference
on Pattern Languages of Programming and Computing (EuroPLoP2010),
Kloster Irsee, Germany, 2010.

[13] J.L. Ortega-Arjona Applying Design Patterns for Communication Compo-
nents. Communicating Parallel Layer components for an Hypercube Sorting.,
Proceedings of the 8th Latin American Conference on Pattern Languages of
Programming (SugarLoafPLoP2010), Salvador, Bahia, Brazil, 2010.

17


