
A comparison of two Software Architectures for General

Purpose Mobile Service Robots

Mauricio MATAMOROS∗, Jesus SAVAGE† and Jorge Luis ORTEGA-ARJONA‡
∗ BioMechanical Engineering Department, 3mE, Delft University of Technology. Mekelweg 2, 2628 CD, Delft. The Netherlands.
† Posgrado de Ingenierı́a. Universidad Nacional Autónoma de México. Av. Universidad 3000, CP04510, México D.F., México.
‡ Facultad de Ciencias. Universidad Nacional Autónoma de México. Av. Universidad 3000, CP04510, México D.F., México

Abstract—This paper exposes a set of tools which can be used to
quantitatively evaluate the required effort to update the software system
that operates a general purpose service mobile robot. These tools are used
to compare a Blackboard-based and a Peer-to-Peer architectures in the
context of mobile robotics. The analysis consider the development cost for
an update, as well as the response time for both architectures. The results
show that it is regularly simpler to maintain a robotics software system
with Blackboard architecture than when a Peer-to-Peer architecture is
used. Also results show that there is no noticeable change in the response
time or performance of the robot when using any architecture.1

I. INTRODUCTION

A robot which interacts with humans and their environment often

needs to solve several complex tasks, which requires many hours

of complex software development [1], [2], [3]. During development,

several algorithms and approaches have to be tested, to solve each part

of the overall task the robot has to accomplish. Hence, robotics pro-

gramming is commonly performed by dividing the software in several

highly-specialized modules, which often require to be modified over

time: software modules have to be frequently replaced, split, merged

or updated. Since these modules require to communicate among

themselves, any changes in a module commonly requires testing and

modifying several other modules. This represents a necessary but

tedious and time-consuming task.

As an example, consider a Vision module (Figure 1(a)), which

performs all image processing for a robot’s vision and has grown

too big. In order to keep the maintainability of the software system,

the Vision module is going to be divided into three specialized sub-

modules (Figure 1(b)). Nevertheless, other three modules depend

on the data produced by the Vision module: the Task Planner, the

Cartographer and the Human-Robot Interaction (or HRI). Once the

Vision module is divided, the three resulting modules need to be

modified to obtain the information from all the appropriate modules

with which Vision used to communicate.

During software development, time matters. It ts very inefficient

to keep developers fixing coupling errors every time the architecture

changes. Hence, applying some software architecture concepts and

practices for the connection between modules, tend to reduce the up-

date and test times of components. For example, developing loosely-

coupled modules allow to exchange modules with a minimal number

of modifications, or even, no modifications at all. On the other hand,

the response time of any robotics software is very important. Tightly-

coupled software systems tend to provide a short response time, but

they also tend to be difficult to develop or maintain. Changing or

updating one or several components in any tightly-coupled software

system is a very painful, time-consuming task.

1This work was supported by DGAPA UNAM under Grant PAPIIT
IG100915 and PAPIME PE102115

(a) The system before Vision module spe-
cialization.

(b) The system after Vision module spe-
cialization.

Fig. 1. Specialization of the Vision module. Lines represent the data flow
between the different modules.

In the distributed systems literature, it is generally assumed that

a peer-to-peer architecture (one with direct connections between

modules) has faster response than a centralized architecture [4], [5],

[1], [6]. On those studies, computer power is not a constrain, and

powerful tools such as redundancy are available. As result, peer-

to-peer architecture is the actual choice for many robotics software

development such as ROS (Robot Operating System) [1], one of

the most popular robotic frameworks used nowadays. However, no

quantitative comparisons on response time between peer-to-peer and

centralized architectures have been performed. Measuring such a gain

in response time deserves the effort of developing a tightly-coupled,

complex architecture such as peer-to-peer, and the development time

invested on it. The importance grows considering the constraints of

embedding the software within a mobile robot.

Thus, this paper proposes two comparisons:

• The first comparison estimates the complexity of updating a peer-

to-peer architecture against a Blackboard architecture, due to

changes on one of its components.

• The second comparison estimates the relative response time

of a peer-to-peer architecture against a centralized Blackboard

architecture, both in the context of general purpose service

mobile robotics.

II. THE VISION MODULE EXAMPLE REVISITED

Let us consider the Vision module specialization example in

further detail. This module executes three functions:

• find_human. A human face recognition based human detector, which is used by
Task Planner and HRI modules;

2015 IEEE International Conference on Autonomous Robot Systems and Competitions

978-1-4673-6991-6/15 $31.00 © 2015 IEEE

DOI 10.1109/ICARSC.2015.10

131

• find_furniture. A shape and texture based large object detector, which is
used by Cartographer module; and

• find_object. A SIFT/SURF and geometry based small object detector, which
is used by Task Planner module.

These dependencies are explicit bidirectional connections for

communication between the HRI, the Task Planner, the Cartographer
modules, and the Vision module (Figure 1). When the Vision module

is divided into the Furniture Finder, Object Finder, and Face Finder
modules, the other three dependent modules need to be updated. So,

the Cartographer module now should connect with the Furniture
Finder module; the HRI module now should connect with the Face
Finder module; and the Task Planner module should connect with the

Furniture Finder, the Object Finder and the Face Finder modules.

This last update is quite difficult, since the Task Planner module now

needs to handle three connections, and implement protection methods

for three potential sources of failures (like a broken connection)

instead of one.

Also, the Task Planner module is going to be moved to another

computer to balance the CPU load and increase the response time.

However, Task Planner is connected with other five modules. Thus,

each dependence has to be updated, and so, five changes are required,

which the developers have to update (Figure 1(b)).

(a) A system with a Peer-to-peer archi-
tecture for connections.

(b) A system with a Blackboard based
architecture for connections.

Fig. 2. Specialization of the Vision module. Lines represents the data flow
between modules.

Consider a similar scenario with a centralized architecture where

all requests are made to a central component (Blackboard). Here, the

HRI, Task Planner, Cartographer and Vision modules are connected

to each other through the Blackboard module. In such scenario, the

Task Planner doesn’t need to be aware of the existence of any other

module but the Blackboard module, and if it requires some data,

the Blackboard module should provide it. The same applies any

other module, but the Blackboard module, which need to know every

one. So, if a module is replaced by another one, or is divided into

several sub-modules, or many modules are merged into a single super-

module, the Blackboard module is the only component to be updated.

In contrast with peer-to-peer, notice that in Blackboard the

number of connections increases in one per module. There is no need

of considering interdependences between modules, since all modules

depend on the Blackboard module and it will provide the requested

data. Updating or trying to follow the connection diagram is quite

simple (Figure 2(b)).

III. COMPARING ARCHITECTURES FOR A ROBOTICS SOFTWARE

SYSTEM

A quick view of Figure 2(a) and Figure 2(b) shows that a

Blackboard-based architecture is simpler than a Peer-to-Peer archi-

tecture, providing an intuitive notion that it is also easier to maintain.

Also, it seems that the Blackboard component, centralized as it is,

seems also to be a bottleneck. This may impact on the response time.

Hence, the main objective of this paper is to test whether using a

Blackboard-based architecture offers better extensibility, restructur-

ing and a similar response time, compared against a Peer-to-Peer

architecture when the granularity of the software system is medium

or coarse. The idea is that a Blackboard-based architecture is simpler

to develop than a peer-to-peer one, with no noticeable difference in

the response time for general purpose service mobile robots. For this,

the following definitions are used:

• Extensibility focuses on the extension of a software system with new features, as
well as the replacement of components with improved versions, and removal of
unwanted or unnecessary features and components [7].

• Restructuring deals with the reorganization of the components of a software system
and the relationships between them; for example, when changing the placing if a
component by moving it to a different subsystem [7].

• Response time is the ability of the software product to provide appropriate response,
processing time, and throughput rates, when performing its function under stated
conditions [8].

Extensibility and restructuring are features related to the build-

time of the software system, whereas response time is a run-time

feature. To evaluate extensibility and restructuring, several change

scenarios are applied for both architectures. Each update task is

modeled as an algorithm, in which each step is an atomic operation.

By considering the number of functions and modules involved as

the data length, the complexity of each algorithm is calculated and

compared for both architectures. Comparison results are shown in

Table I.

The analyzed scenarios for extensibility and restructuring are

described below. For these, consider that context means the hardware

on which the module is executed.

• Exchange of equivalent modules. An old module is replaced by a new one on the
same context (Extensibility).

• Change the definition of a function in a module (Extensibility).
• Move a function from one module to another (Restructuring).
• Function specialization. A function is divided into two or more specialized

functions in the same module (Restructuring).
• Function generalization. Two or more functions in the same module are merged

into a new, more general function (Restructuring).
• Move a module to another context (Restructuring).
• Module specialization. A module is divided into two or more specialized modules

on the same context (Restructuring).
• Module generalization. Two or more modules on the same context are merged into

a new more general module (Restructuring).

For comparing response time, each local function is considered to

be executed in a constant time, adding the execution time and average

communication time for each remote dependency. This can be simply

reduced to the execution time of the function plus the communication

time. The response time analysis is carried out for both architectures,

and results are shown in Table II.

IV. ANALYSIS OF EXTENSIBILITY, RESTRUCTURING AND

RESPONSE TIME

A software system used to control a mobile robot, designed for

human interaction, is analyzed for Extensibility, Restructuring, and

Response Time, for both peer-to-peer and Blackboard architectures.

Extensibility and Restructuring impact only in the build-time of the

software system, which here it is intended to be minimal. On the other

hand, response time impacts only during run-time, and it is expected

to be similar for both architectures, with no noticeable effects for

humans.

132

A. A Formal Description of a Robotics Software System

For the present analysis, the following definitions are required:

A system S is S = (M,C) where

• M the set of modules of S, such as M = {m1,m2, ...,mn} �= ∅.
• C the set of connections between modules such as C ⊆ {(mi,mj) ∈ M×M |

mi �= mj}.

Also, a module m of the system S is defined as m = {fm
1 , fm

2 , ..., fm
n }, where:

• yi = fm
i (xi) is the i-th function of the function set of the m module.

• yi is the result produced after the execution of the function fm
i (xi)

• xi is the set of parameters required by the function fm
i to be executed.

For convenience, the following notations provide information
about the software system:

• {mi} is the set of modules of the system.
• |{mi}| is the number of modules of the system.
• D(mi) is the dependence function D, which returns the set of modules that

depend on any function f
mi
j of the module mi.

• {fmi
j } is the set of functions in the module mi.

• |mi| = |{fmi
j }| is the number of functions in the module mi.

• D(f
mi
j) is the dependence function D, which returns the set of modules that

depend on the function f
mi
j of the module mi.

• mk → f
mi
j implies that the module mk calls the function f

mi
j of module mi.

• t(f
mi
j) is the amount of time required by mi to execute its own function f

mi
j .

• t(cmi
, cmj

) is the communication time between the modules mi and mj .

• t(mk, f
mi
j) is the amount of time required by mk to execute the function f

mi
j

of module mi.

Assuming that t(cmi ≈ cmj)
∼= tk, where tk is a constant

equivalent to the average one-way communication time between two

modules directly connected, and considering that every communica-

tion between two modules is achieved by a request and a response

(bidirectional communication), it is possible to model the average

communication time between modules as tc = 2tk ∼= t(cmi + cmj).

B. Analysis

For Extensibility the following test scenarios are considered:

• Function change: modify the definition of the function of a module.
• Module swap: exchange a module for another module in the same context, which

performs equivalent functions, with different signatures or execution time.

For Restructuring the following test scenarios are considered:

• Function relocation: move a function from one module to another.
• Split function: divide a function into two or more specialized functions.
• Join functions: gather two or more functions into one generalized function.
• Module relocation: move a module from one context to another.
• Split module: divide a module in two or more specialized sub-modules using

function relocation.
• Join modules: gather two or more modules into one generalized super-module using

function relocation.

1) Extensibility and Restructuring Analysis for a Peer-to-Peer
architecture: Algorithms 1 and 2 represent the scenarios of Function

Change for Extensibility. When a function in a module is modified,

its signature or execution time also changes. Thus, changes in the

dependencies must be performed. Algorithm 1 is proposed to depict

a change in the signature for a peer-to-peer architecture.

Algorithm 1 Function (signature) change in Peer-to-Peer: O(n2)

1: for each module mj ∈ D(fmi) do
2: for each call to fmi ∈ mj do
3: Change call to fmi with a call to its equivalent gmi

4: end for
5: end for

Taking n = max(|D(fmi)|, |mj
call−−→ fmi |), the complexity

of this algorithm is O(n2). Supposing that (a) the difference is the

execution time, (b) each module has a wrapper when the remote call

is performed, and (c) this validation occurs only once, the update

algorithm can be reduced as shown in Algorithm 2. In this case,

n = |D(fmi)|, and thus, the complexity of this algorithm is O(n).

Algorithm 2 Function (execution time) change in Peer-to-Peer: O(n)

1: for each module mj ∈ D(fmi) do
2: Update the execution time for fmi with the time required by gmi

3: end for

Algorithms 3 and 4 represent the scenarios of Module Swap for

Extensibility. Here, when a module is replaced by another module

with exactly the same functions (this is, the same signature and the

same execution time), the case reduces, and there is properly nothing

to do. However, if there are differences in the signature, changes

in the dependencies have to be performed. Algorithm 3 shows the

example of a module m2 replacing a module m1 for a peer-to-peer

architecture.

Algorithm 3 Module Swap in Peer-to-Peer: O(n3)

1: for each function f
m1
i ∈ m1 do

2: for each module mj ∈ D(f
m1
i) do

3: for each call to f
m1
i ∈ mj do

4: Change call to f
m1
i with a call to its equivalent f

m2
i

5: end for
6: end for
7: end for

Again, when there are (a) differences in the execution time, and

(b) assuming that this validation is made only once in each dependent

module, the update algorithm is reduced as shown in Algorithm 4.

Algorithm 4 Module Swap in Peer-to-Peer: O(n2)

1: for each function f
m1
i ∈ m1 do

2: for each module mj ∈ D(f
m1
i) do

3: Update the execution time for f
m1
i with the time required by f

m2
i

4: end for
5: end for

Algorithm 5 represents the scenario of Function Relocation for

Restructuring. Here, function fm1
i is moved from module m1 to

module m2 for a peer-to-peer architecture.

Algorithm 5 Function Relocation in Peer-to-Peer: O(n2)

1: for each module mj ∈ D(f
m1
i) do

2: for each call to f
m1
i ∈ mj do

3: Change call to f
m1
i with a call to its equivalent f

m2
i

4: end for
5: end for

Algorithm 6 represents a scenario of Join Functions for Restruc-

turing. Here, functions fm1
i (x) = gm1

1 (x1)◦gm1
2 (x2)◦· · ·◦gm1

n (xn)
in module m1 are gathered together as function fm1

i . Each call to this

set of functions needs to be replaced with calls to fm1
i . Algorithm 6

shows this change for a peer-to-peer architecture.

Algorithm 6 Function merge in Peer-to-Peer: O(n2)

1: for each module mj ∈ D(f
m1
i) do

2: for each call to f
m1
i ∈ mj do

3: Change call to g
m1
1 (x1), . . . , g

m1
n (xn) with a calls to f

m1
i .

4: end for
5: end for

Split Functions for Restructuring in Peer-to-Peer is similar to

joining. Here, function fm1
i in module m1 is divided into several

133

functions, in a such way that fm1
i (x) = gm1

1 (x1) ◦ gm1
2 (x2) ◦

· · · ◦ gm1
n (xn). Each call to fm1

i needs to be replaced with calls

to gm1
1 (x1) ◦ gm1

2 (x2) ◦ · · · ◦ gm1
n (xn). Splitting requires the same

number of operations than joining: O(n2); however, if a wrapper is

used to access this function, and no further changes have to be made,

then it only has to be changed once in each dependent module. Thus,

the complexity becomes linear.

Algorithm 7 represent a scenario of Module Relocation for

Restructuring. When a module is moved to another context, it is

necessary to update each module that is dependent on a function that

belongs to the module being moved with the new module location.

Algorithm 7 shows the proposed modification for a peer-to-peer

architecture.

Algorithm 7 Function relocation in Peer-to-Peer: O(n)

1: for each call to mi ∈ D(m1) do
2: Update the access point to module m1.
3: end for

Algorithm 8 represents a scenario of Split Module for Restruc-

turing. Based on the Function Relocation algorithm (Algorithm 5),

dividing a module into several specialized modules is achieved by

moving the smallest function subset in the original module to a

new module. Algorithm 8 shows this modification for a peer-to-peer

architecture.

Algorithm 8 Split a module into sub-modules in Peer-to-Peer: O(|FR| ·n2)

1: for each function to relocalize in f
m1
i do

2: for each module mj ∈ D(f
m1
i) do

3: for each call to f
m1
i ∈ mj do

4: Change call to f
m1
i with a call to f

m2
i

5: end for
6: end for
7: end for

Similar to splitting, merge several modules into a single general-

ized super-module is achieved by moving functions from all modules

to be join into a module. It requires the same amount of operations:

O(|FR| · n2).

2) Extensibility and restructuring analysis in Blackboard-based
architecture: Algorithm 9 represents the scenario of Function Change

for Extensibility. When a function in a module is modified, its

signature or execution time may also change. However, since this

information is stored in the blackboard, this is the only component

which needs to be updated. Algorithm 9 shows the proposed algorithm

for a change in the signature for a blackboard-based architecture.

Algorithm 9 Function change in Blackboard: O(1)

1: Update the signature of fmi in the blackboard and control component modules.
2: Update the execution time of fmi in the blackboard and control component modules.

If the blackboard component and its control component are

separated, only four changes are required; if these components are

together, only one change is required. Thus, the complexity of this

algorithm is O(1).

Algorithm 10 represents the scenario of Module Swap for Ex-

tensibility. When a module is replaced with another module with

exactly the same functions (same signature and execution time), the

case is trivial, and there is nothing to do. However, if there are

differences in the signature, changes in the dependencies have to be

Algorithm 10 Module swap in Blackboard: O(n)

1: for each function f
m1
i ∈ m1 do

2: Update signature of f
m1
i in the blackboard and control component modules.

3: Update the execution time of f
m1
i in the blackboard and control component

modules.
4: end for

made. Algorithm 10 shows the case in which a module m2 replaces

another module m1.

Algorithm 11 represents the scenario of Function Relocation for

Restructuring. This change considers moving the function fm1
i from

module m1 to module m2. Algorithm 11 shows this for a blackboard-

based architecture.

Algorithm 11 Function relocation in Blackboard: O(1)

1: Update ownership of f
m1
i from f

m1
i to f

m2
i in the blackboard and control

component modules.

Algorithm 12 represents the scenario of Split Function for Re-

structuring. Function fm1
i in module m1 is divided into several

functions, in such a way that fm1
i (x) = gm1

1 (x1) ◦ gm1
2 (x2) ◦

· · · ◦ gm1
n (xn). Each call to fm1

i needs to be replaced with calls

to gm1
1 (x1) ◦ gm1

2 (x2) ◦ · · · ◦ gm1
n (xn). Algorithm 12 shows this for

a blackboard-based architecture.

Algorithm 12 Function split in Blackboard: O(n2)

1: for each module mj ∈ D(f
m1
i) do

2: for each call to f
m1
i ∈ mj do

3: Change call to f
m1
i with calls to g

m1
1 (x1), . . . , g

m1
n (xn)

4: end for
5: end for

However, if a wrapper is used to access this function, and no

further changes have to be performed, it only has to modify each

dependent module only once, and so, the complexity becomes linear.

Similar to splitting is joining functions. Functions fm1
i (x) =

gm1
1 (x1) ◦ gm1

2 (x2) ◦ · · · ◦ gm1
n (xn) in module m1 are gathered in

function fm1
i . Each call to this set of functions needs to be replaced

with calls to fm1
i . The complexity of the algorithm is the same as

joining: O(n2).

Algorithm 13 represents a scenario of Module Relocation for

Restructuring. If a module is moved to another context, and since

it only connects with the blackboard, then the blackboard is the only

component that needs to be updated with the information about the

new location of the module. Algorithm 13 shows this case for a

blackboard-based architecture.

Algorithm 13 Function relocation in Blackboard: O(1)

1: Update the access point to module m1 in blackboard and control component modules.

Algorithm 14 represents the scenario of Split Module for Restruc-

turing. Based on the Function Relocation algorithm (Algorithm 11),

dividing a module into several specialized modules is achieved by

moving the smallest function subset in the original module to a new

module as follows. Algorithm 14 shows this for a blackboard-based

architecture.

Similar to splitting, merge several modules into a single general-

ized super-module is achieved by moving functions from all modules

to be join into a module. It requires the same amount of operations:

O(|FR|).

134

Algorithm 14 Split a module into sub-modules in Blackboard: O(|FR|)
1: for each function to relocalize in f

m1
i do

2: Update in blackboard the reference f
m1
i with f

m2
i

3: Update in the control component the reference f
m1
i with f

m2
i

4: end for

C. Comparison results

Table I summarizes the complexity of each one of the modifica-

tions, expressed as algorithms, for both peer-to-peer architecture and

blackboard-based architecture.

Scenario Peer-to-Peer Blackboard

Exchange of equivalent modules O(n3) O(n)

Function definition change O(n2) O(1)

Function relocation O(n2) O(1)

Function specialization O(n2) O(n2)

Function generalization O(n2) O(n2)
Module relocation O(n) O(1)

Module specialization O(|FR| · n2) O(|FR|)
Module generalization O(|FR| · n2) O(|FR|)

TABLE I. COMPARISON OF THE EXTENSIBILITY AND RESTRUCTURING

FEATURE ANALYSIS OF PEER-TO-PEER AND BLACKBOARD

ARCHITECTURES.

D. An Example: Specialization of the Vision module

Continuing with the example of the Vision module which is going

to be divided into a person detector module (with the same name:

Vision) and an object detector module (OBJ-FND). The vision module

and its dependencies ACT-PLN, ST-PLN, and HEAD) will be kept in

the same computer, while the (OBJ-FND) module will be executed

on a second faster computer (see Figure 3).

(a) Initial scenario prior to the special-
ization of the VISION module. The ACT-
PLN and SP-PLN modules depends on

VISION’s functions.

(b) Final scenario (after the specialization
of the VISION module). The ACT-PLN
and SP-PLN modules now depends on

VISION and OBJ-FND modules.

Fig. 3. Specialization of the Vision module. Lines represents data dependency.

In order to achieve this, the Vision module goes through a modular

specialization, followed by a module relocation. Also, the execution

time of the function changes, so it is required an update of the function

definition.

Specializing a module may be seen as creating a new empty mo-

dule and move the smallest function subset into it. For this example,

the smallest function subset consists only in the detect_person
function which is moved to the empty OBJ-FND module. After this,

settings and references must be updated:

1) Update the system of the detect_person to the OBJ-FND module.
2) Update the system location of the OBJ-FND module.
3) Update the system execution time of the detect_person function.

1) Specialization of the Vision module under a Peer-to-Peer
architecture: Using algorithm 8 to divide a module for a peer-to-

peer architecture, detect_object is the only function to relocalize

from Vision to OBJ-FND. Algorithm 15 shows the sequence of steps

for a peer-to-peer architecture.

Algorithm 15 Vision specialization (Peer-to-peer)

1: for each module mj ∈ D(detect objectV ISION) do
2: for each call to detect objectV ISION ∈ mj do
3: Change call to detect personV ISION with a call to

detect personOBJ−FND

4: end for
5: end for

The dependencies of the function detect objectV ISION are

given by the function D(detect objectV ISION) = {ACT −
PLN,ST −PLN}. Analyzing the pseudo code shown in Figure 3,

the module ACT-PLN performs one call to detect_object, while

the module ST-PLN calls it three times, so the number of changes by

now is four.

Next step consists of adding or updating the dependencies of

detect_object (ACT-PLN and ST-PLN). The location of OBJ-
FND is moved from computer 1 to computer 2 (change of context).

This is a single change on each module, two more changes for a total

of 6.

Finally, since the execution time of detect_object has

changed, the dependencies need to be updated, adding 2 more changes

for a total of 8. Supposing that each changes takes 5 minutes to be

performed, updating the whole system requires about 40 minutes.

2) Specialization of the Vision module under a Blackboard
architecture: Using Algorithm 14 to divide a module of a

Blackboard-based architecture, the only function to relocalize is

detect_object from Vision to the OBJ-FND. Algorithm 16

shows the sequence of steps to achieve this for a Blackboard-based

architecture.

Algorithm 16 Vision specialization (Blackboard)

1: Update in blackboard the reference detect personV ISION with
detect personOBJ−FND

2: Update in the control component the reference detect personV ISION with
detect personOBJ−FND

Hence, only two changes are required for update the system.

Next step consist on adding or updating the Blackboard with the new

location of OBJ-FND, which is moved from computer 1 to computer

2 (change of context). The total of changes by now is 3.

Finally, since the execution time of the detect_object
changes, the new value has to be updated in the Blackboard module,

adding one more change to the number of changes, for a total of

4. Supposing that each changes takes about 5 minutes, updating the

system requires about 20 minutes.

E. Response Time Analysis

Here, an analysis of the response time of both architectures is

carried out, estimating the amount of time required to execute a

function present in each architecture. Since the robot interacts with

humans and operates in a human-friendly environment, the response

time of the system is not critical, it has to be close to the human

response time.

135

1) Performance Analysis for a Peer-to-peer Architecture: In a

Peer-to-Peer architecture, if a module m1 requires a function fm2
i

of another module m2, it is assumed that there is a direct connection

between those two modules. In other words, there is a fm1
i (x) such

as fm1
i (x) = g(x1) ◦ fm2

j (x2)⇒ ∃cm1,m2 , where x1 ∪ x2 ⊆ x.

Based on Section IV-A, the execution time of a module m1

requesting an execution of the function fm2
i in a module m2 is

t(m1, f
m2
i) = t(fm2

i) + tc. However, when the granularity of the

system is coarse, this reduces to tc
 t(fm2
i) so t(m1, f

m2
i) ∼=

t(fm2
i). Notice that tc is the average bidirectional communication

time between two modules. Regardless the size of the data, and

without considering network delays, broken packages or connections,

message loss, etc.

2) Response Time Analysis for a Blackboard-based Architecture:
In a blackboard-based architecture, all operations are carried out

by reading and writing shared variables, stored within the black-

board component. Let V ?{fm1
1 , . . . , fm1

p , . . . , fmn
1 , . . . fmn

r } ∪
{x1, . . . , xm} ∪ {y1, . . . , yk} be the set of all the shared variables

and v = {vi, v2, . . . , vn} ∈ V be a vector of shared variables stored

in the blackboard. Then, let be:

1) readmi (vj) a read of all the shared variables in vj performed by mi.
2) writemi (vj) a write of all the shared variables in vj performed by mi.
3) tr = t(readmi (vj)) the amount of time for read the shared variables in vj .
4) tw = t(writemi (vj)) the amount of time for write the shared variables in vj .

Since in a blackboard-based architecture all modules are con-

nected through the blackboard, if a module m1 requires a function

fm2
i from m2, then it writes to the blackboard the execution request

in a single write operation. Then, the blackboard sends all required

data to m2 (a read operation of the data is performed). Once

the execution of fm2
i finishes, m2 writes back the results in the

blackboard with a single write operation. The blackboard report these

results back to m1. With this schema, there are two write operations,

two read operations and four communications between modules, so

t(m1, f
m2
i) = t(fm2

i) + 2tr + 2tw + 4tc. However, since the read

and write operations are performed in local memory, which is by far

much faster than message-passing communications, then tr
 tc and

tw
 tc. Since in comparison they are neglectable, it is valid that

t(m1, f
m2
i) ∼= t(fm2

i) + 4tc.

Again, when the granularity is coarse, then tc
 t(fm2
i), and so

t(m1, f
m2
i) ∼= t(fm2

i), which is the same than in Peer-to-Peer.

3) Response Time Comparison: Here, the response time required

for both architectures while executing the function fm2
i of module

m2, when requested by module m1 (denoted as t(m1, f
m2
i)) is shown

in Table II for different levels of granularity.

Granularity Peer-to-Peer Blackboard

Medium t(f
m2
i) + tc t(f

m2
i) + 4tc

Coarse t(f
m2
i) t(f

m2
i)

TABLE II. COMPARISON OF THE RESPONSE TIME OF PEER-TO-PEER

AND BLACKBOARD ARCHITECTURES FOR EACH TYPE OF GRANULARITY.

V. CONCLUSIONS

Results for Extensibility and Restructuring in Table I, shows that

the time required to update the robot’s software often reduces when

using a Blackboard architecture, or remains equal. Therefore, there

is an important saving during the software build-time. Notice that in

the example of Section IV-D, about 20 minutes when updating the

robotics software system were saved.

For the analysis performed in Section IV, access to the source

code is required. In practice, this assumption may not always true,

making necessary to use wrappers or intermediary components,

fact that is more critical for peer-to-Peer architectures than for

blackboard-based architecture. Using middlewares or frameworks

like CARMEN[9], MIRO[10], MOOS[11], OpenRDK[12], Orca[13],

PLayer/Stage[14], and ROS [1] may aid to solve these problems at

the cost of sharpening the learning-curve, or reduce the performance

of the whole system.

In the summary of the response time analysis, shown in Table

II, note that there is no noticeable difference between the response

time of both architectures, and when the granularity of the system is

medium, the difference tends to reduce as the granularity goes from

coarse to medium.

Further research in this area includes the comparison of robust-

ness, fault tolerance, maintainability, and adaptability among others.

Also, hybrid architectures, may be analyzed.

REFERENCES

[1] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[2] D. Calisi, A. Censi, L. Iocchi, and D. Nardi, “Openrdk: a modular
framework for robotic software development,” in Proc. of Int. Conf. on
Intelligent Robots and Systems (IROS), Sep. 2008, pp. 1872–1877.

[3] S. Enderle, H. Utz, S. Sablatnög, S. Simon, G. Kraetzschmar, and
G. Palm, “Miro: Middleware for autonomous mobile robots,” in In
Telematics Applications in Automation and Robotics, 2001.

[4] I. Sommerville, Software Engineering, ser. International Computer
Science Series. Addison-Wesley, 2007. [Online]. Available:
http://books.google.com.mx/books?id=B7idKfL0H64C

[5] D. Milojicic, V. Kalogeraki, R. Luko, K. Nagaraja, J. Pruyne,
B. Richard, S. Rillins, and Z. Xu, Peer-to-Peer Compuing. HP
Laboratories Palo Alto, 2003.

[6] M. Matamoros, “Análisis de extensibilidad, reestructuración y de-
sempeño de software para robots móviles,” Master’s thesis, Universidad
Nacional Autónoma de México, 2013.

[7] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture, Volume 1: A System of Patterns.
Chichester, UK: Wiley, 1996.

[8] F. Losavio and C. Isys, “Towards a standard eai quality terminology,”
in Proceedings of the 23rd International Conference of the Chilean
Computer Science Society (SCCC’03. Society Press, 2003, pp. 119–
129.

[9] D. Montemerlo, N. Roy, and S. Thrun, “Perspectives on standardization
in mobile robot programming: the carnegie mellon navigation (carmen)
toolkit,” in Intelligent Robots and Systems, 2003. (IROS 2003). Pro-
ceedings. 2003 IEEE/RSJ International Conference on, vol. 3, 2003,
pp. 2436–2441 vol.3.

[10] S. Enderle, H. Utz, S. Sablatnög, S. Simon, G. Kraetzschmar, and
G. Palm, “Miro: Middleware for autonomous mobile robots,” Telematics
Applications in Automation and Robotics, 2001.

[11] O. M. R. Group. (2008) The moos homepage. [Online]. Available:
http://www.robots.ox.ac.uk/ mobile/MOOS/wiki/pmwiki.php

[12] D. Calisi, A. Censi, L. Iocchi, and D. Nardi, “Openrdk: a modular
framework for robotic software development,” in Intelligent Robots
and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on.
IEEE, 2008, pp. 1872–1877.

[13] A. Makarenko, A. Brooks, and T. Kaupp, “Orca: Components for
robotics,” in International Conference on Intelligent Robots and Systems
(IROS), 2006, pp. 163–168.

[14] B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project:
Tools for multi-robot and distributed sensor systems,” in Proceedings
of the 11th international conference on advanced robotics, vol. 1, 2003,
pp. 317–323.

136

