EuroPLoP '18, July 4-8, 2018, Irsee, Germany

J. Ortega-Arjona

Applying Idioms for Synchronization Mechanisms

Synchronizing communication components for an N Body Simulation

Jorge L. Ortega-Arjona
Departamento de Matematicas
Facultad de Ciencias, UNAM
jloa@ciencias.unam.mx

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy oth-
erwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and /or a fee. Request
permissions from permissions@acm.org.

EuroPLoP 18, July 48, 2018, Irsee, Germany

© 2018 Copyright held by the owner/author(s). Publication
rights licensed to ACM.

ACM ISBN 978-1-4503-6387-7/18/07.
https://doi.org/10.1145/3282308.3282334

ABSTRACT

The Idioms for Synchronization Mechanisms is a collection of
patterns related with the implementation of synchronization
mechanisms for the communication components of parallel
software systems. The selection of these idioms take as input
information (a) the design pattern of the communication
components to synchronize, (b) the memory organization of
the parallel hardware platform, and (¢) the type of commu-
nication required.

In this paper, it is presented the application of the Idioms
for Synchronization Mechanisms to synchronize the commu-
nication components for an N Body Simulation, within the
Detailed Design stage of the Pattern-based Parallel Software
Design Method. In two previous papers, this method has been
used in two previous stages: (a) in the Coordination Design
stage, selecting the Manager-Workers architectural patterns
as the coordination, which depends on the N- Body problem;
and (b) in the Communication Design stage, selecting the
Remote Rendezvous design pattern as communication, which
depends on the memory organization of the parallel hard-
ware platform, and on the architectural pattern previously
selected.

CCS CONCEPTS

e Software and its engineering — Cooperating com-
municating processes; Cooperating communicating
processes; Object oriented architectures;

KEYWORDS

Idioma, Synchronization Components, N-Body Simulation

RIGHTS LI N '-"l}

ACM Reference Format:

Jorge L. Ortega-Arjona. 2018. Applying Idioms for Synchronization
Mechanisms: Synchronizing communication components for an
N Body Simulation. In 23rd European Conference on Pattern
Languages of Programs (EuroPLoP ’18), July 4-8, 2018, Irsee,
Germany. ACM, New York, NY, USA| 8 pages. https://doi.org/
10.1145/3282308.3282334

1 INTRODUCTION

For the last fifty years, a lot of work and experience has
been gathered in concurrent, parallel, and distributed pro-
gramming around the synchronization mechanisms originally
proposed during the late 1960s and 1970s by E.W. Dijkstra
[4], C.A.R. Hoare [6-8], and P. Brinch-Hansen [1-3]. Further
work and experience has been gathered today, such as the
formalization of concepts and their representation in different
programming languages.

In this paper, the objective is to show how the idioms that
provide a pattern description of well-known synchronization
mechanisms can be applied for the N-Body Simulation as a
particular programming problem under development, apply-
ing the Pattern-based Parallel Software Design Method [11].
In two previous papers, the method has been used:

e in the Specification of the System stage, selecting the
Manager-Workers architectural patterns as the
coordination, which depends mostly on the N-Body
problem [12], and;

e in the Specification of the Communication Components
stage, selecting the Remote Rendezvous design
pattern as the communication, which depends on the
memory organization of the parallel hardware platform,
and on the architectural pattern previously selected
[13].

The description of synchronization mechanisms as idioms
should aid software designers and engineers with a descrip-
tion of common programming structures used for synchroniz-
ing communication activities within a specific programming
language, as well as providing guidelines on their use and
application during the design and implementation stages of a
parallel software system. This development of implementation
structures constitutes the main objective of the Detailed De-
sign step within the Pattern-based Parallel Software Design
method [11].

Applying ldioms for Synchronization Mechanisms

2 BACKGROUND

2.1 Specification of the Systems: the
Manager-Workers pattern

In the paper, Applying Architectural Patterns for Parallel
Programming. An N Body Simulation [12], the Manager-
Workers (MW) Architectural Pattern has been selected as
a viable solution for the coordination within the parallel
program that solves an N Body Simulation. In order to apply
the Idioms for Synchronization Mechanisms (ISM), some
information is required related to the MW Pattern, such as
the parallel platform and programming language.

For this implementation, the parallel platform available for
this parallel program is a cluster of computers, specifically,
a dual-core server (Intel dual Xeon processors, 1 Gigabyte
RAM, 80 Gigabytes IIDD) 16 nodes (cach with Intel Pentium
IV processors, 512 Megabytes RAM, 40 Gigabytes HDD),
which communicate through an Ethernet network. The par-
allel application for this platform is programmed using the
Java programming language.

2.2 Specification of the Communication
Components: the Remote Rendezvous
pattern

In the paper Applying Design Patterns for Communication
Components. Communication between Manager and Worker
components for an N-Body Simulation [13], the Remote Ren-
dezvous Design Pattern has been selected as a viable solution
for the communication components of the MW pattern for
solving the N Body Simulation. In order to apply the ISM,
some information related with the Remote Rendezvous Pat-
tern is required as well. This information is summarized as
follows.

2.2.1 The Remote Rendezvous pattern. The communication
components are defined so they enable the exchange of Body
type in a bidirectional, point-to-point, remote communication
subsystem [13]. Hence, the Remote Rendezvous pattern has
already been previously chosen as an adequate solution for
such communications [9, 12, 13].

e Description of the communication. The Remote
Rendezvous (RR) pattern provides a bidirectional,
point-to-point, remote communication subsystem for
the N Body simulation, which is based on the MW
pattern. As an array of RR components, it is described
as a set of communication components that dissemi-
nate requests and data to multiple Worker components
executing on different processors or computer systems.
Hence, a single RR pattern is replicated to distribute
the whole set of bodies to be processed to the Worker
components, executing on other memory systems. All
Worker components execute simultaneously. However,
they must communicate synchronously over the net-
work of the distributed memory parallel system.

RIGHTS LI N '-"l}

EuroPLoP '18, July 4-8, 2018, Irsee, Germany

e Structure and dynamics. This section takes infor-
mation of the RR design pattern, expressing the in-
teraction between the software components that carry
out the communication between parallel software com-
ponents for the actual example.

(1) Structure. The structure of the RR pattern applied
for designing and implementing communication com-
ponents of the MW pattern is shown in Figure 1,
using a UML Collaboration Diagram [5]. Notice that
the communication component structure allows a
synchronous, bidirectional communication between
Manager and Worker components [10, 13].

worker[i]: Worker

1. makeRequestWaitReply () 4. makeReply ()

:RemoteProcedureCall

2. getRequest ()

3. Reply

Network

manager:Manager

Figure 1: UML Collaboration Diagram of the Re-
mote Rendezvous pattern used for synchronously ex-
change Body objects between Manager and Worker
components of the MW solution to the N Body Sim-
ulation.

(2) Dynamics. This pattern actually performs a single
remote calls within the available distributed memory
parallel platform. Figure 2 shows the behavior of the
participants of this pattern for the actual example
[11, 13].

In this scenario, a single bi-directional, synchronous

remote calls is carried out, as follows [13]:

— The worker requests data from the manager, so
it issues a request operation to its remote proce-
dure call component. This redirects the call to the
manager through a socket, synchronizing the call
so the worker remains blocked until it receives a
response. If it made a read request for data, it
waits until the data is made available: if it made
a write request, the worker blocks until it receives
an acknowledgement from the manager.

— The manager receives the request. If it is a request
for data, it makes the data available by issuing
a reply to the remote procedure call component
(normally via a socket). On the other hand, if
the request was for a write operation, the manager
writes the partial result at the relevant place within
the data structure and issues an acknowledgement
message to the worker, enabling the it to request
more work, if needed.

EuroPLoP '18, July 4-8, 2018, Irsee, Germany

worker([i]:Worker :RPC manager:Manager
Jl makeRequestWaitRepljl
getRequest ()
makeReply () Reply

Figure 2: UML Sequence Diagram for the Remote
Rendezvous pattern applied for exchanging Body ob-
jects between Manager and Wroker components of
the MW solution for the N-Body Simulation.

(3) Functional description of software components. This
section describes each software component of the
Remote Rendezvous pattern as the participant of
the communication sub-system, establishing its re-
sponsibilities, input, and output [13].

(a) Worker. The worker component has responsibility
for requesting read operations of the set of bodies
that act on a particular body, processing these
information, and requesting write operations of
the new position of such a body.

(b) Manager. The manager component has respon-
sibility for maintaining the integrity and order of
the local data structure of bodies, and serving read
and write requests from the workers.

(¢) Remote procedure call. The remote procedure
call components in this pattern have two main
responsibilities: (a) to serve as a remote communi-
cation and synchronization mechanism, allowing
bidirectional synchronous communication between
any two components on different computers that
it connects, and (b) to serve as a remote commu-
nication stage for the distributed memory organi-
zation between the components, decoupling them
so that communication between them is synchro-
nous. Remote procedure calls are normally used
for distributed memory environments.

3 DETAILED DESIGN

In the Detailed Design step [11], the software designer
applies one or more idioms as the basis for synchro-
nization mechanisms. From the decisions taken in
the previous steps (Specification of the Problem [12],
Specification of the System [12], and Specification of

RIGHTS LI N '-"l}

J. Ortega-Arjona

Communication Components [13]), the main objec-
tive now is to decide which synchronization mecha-
nisms are to be used as part of the communication
substructures.

3.1 Specification of the
Synchronization Mechanism

— The scope. This section takes into consideration
the basic previous information for solving the N
Body Simluation. The objective is to look for the
relevant information for applying a particular id-
iom as a synchronization mechanism.

For the N Body Simulation, the factors that now

affect selection of synchronization mechanisms are

as follows:

x The available hardware platform is a cluster,
this is, a distributed memory parallel platform,
programmed using Java as the programming
language.

+ The Manager Workers pattern is used as an
architectural pattern, requiring to communicate
layer software components [12].

x The Remote Rendezvous design pattern is se-
lected for the design and implementation of com-
munication components to support synchronous
communication between layers [13].

Based on this information, the procedure for se-

lecting an ISM for the N Body Simulation is as

follows [11]:

(a) Select the type of synchronization mechanism.
The RR pattern requires a synchronization mech-
anism that controls the access and exchange of
Body values between a manager and a worker
as software components that cooperate. These
Body values are communicated using basically
remote procedure calls. Hence, the idioms that
describe this type of synchronization mechanism
are the Message Passing idiom and the Remote
Procedure Call idiom [11].

(b) Confirm the type of synchronization mechanism.

The use of a distributed memory platform, given

the previous design decisions, confirms that the

synchronization mechanisms for communication
components in this example may be message
passing or remote procedure calls.

Select idioms for synchronization mechanisms.

Communication between layer components needs

to be performed synchronously, that is, the man-

ager component should wait for a response from
its worker components. This is normally achieved
using the RR pattern. Nevertheless, this design
pattern requires synchronization mechanisms. In

Java, the Remote Procedure Call idiom allows to

develop a synchronization mechanism used here

to show how implementation of the RR pattern
can be achieved using this idiom.

(c

~

Applying ldioms for Synchronization Mechanisms

RIGHTS L

(d)

Verify the selected idioms. Checking the Context
and Problem sections of the Remote Procedure
Call idiom [11]:

x Context: ‘A parallel or distributed application
is to be developed in which two or more soft-
ware components execute simultaneously on a
distributed memory platform. Specifically, two
software components must communicate, syn-
chronize and exchange data. FEach software
component must be able to recognize the proce-
dures or functions in the remote address space
of the other software component, which is ac-
cessed only through I/0 operations.’.

* Problem: ‘To allow communications between
two parallel software components executing on
different computers on a distributed memory
parallel platform, it is necessary to provide
synchronous access to calls between their ad-
dress spaces for an arbitrary number of call
and reply operations.’.

Comparing these sections with the synchroniza-
tion requirements of the actual example, it seems
clear that the Remoter Procedure Call idiom can
be used as the synchronization mechanism for
the communication. The use of a distributed
memory platform implies the use of message
passing or remote procedure calls, whereas the
need for synchronous communication between
manager and worker components points to the
use of remote procedure calls.

The design of the parallel software system can now
continue using the Solution section of the Remote
Procedure Call idiom, directly implementing it in
Java.

— Structure and Dynamics.

(a)

(b)

Structure. The Remote Procedure Call Idiom is
used for implementing the synchronization mech-
anisms of the communication components for the
PL pattern. The Remote Procedure Call idiom
in Java is presented as an interface, declaring
some basic methods on which synchronization
is achieved. Notice that the remote procedure
call allows a synchronization over the two basic
distributed components: a server and a client
[11].

interface RemoteProcedureCallInterfaceq{

c:Client

EuroPLoP '18, July 4-8, 2018, Irsee, Germany

a UML Sequence diagram of the possible exe-
cution of the two participants of this idiom as
the synchronization mechanism within the MRC
pattern. Two parallel software components: a
client c and a server s, which synchronize to
exchange int values. Since they execute on dif-
ferent nodes of the distributed memory platform,
they can only communicate using the remote
procedure call methods.

rpc:RPC

makeRequestWditReply ()

] getRequest (b_:]

[

doRequest. ()

-]

doRequest
makeReply (

L.

reply

i

Figure 3:

UML Sequence Diagram for the Remote

Procedure Call idiom.

public abstract Object makeRequestWaitReply(Object m);

public abstract Object getRequest();
public abstract void makeReply();
}
Dynamics. Remote Procedure Calls are used
in several ways as synchronization mechanisms.
Here, they are used for synchronous communica-
tion. The Remote Procedure Call idiom actually
synchronizes the operation of the layer compo-
nents over distributed memory. Figure 3 shows

In this scenario, the synchronization over the
remote procedure call is performed as follows:
* The communication between software compo-

nents starts when the client ¢ invokes makeRequestWaitRepl

Assuming that the remote procedure call
component is free, it receives the call along
with its arguments. The client ¢ blocks, waiting
until the remote procedure call component
issues a reply.

% At the remote end, the server s invokes getRequest ()

to retrieve any requests issued to the remote
procedure call component. This triggers the
execution of a procedure within the server s,
here doRequest (), which serves the call issued
by the client ¢, operating on the actual param-
eters of the call.

x Once this procedure finishes, the server s in-
vokes makeReply(), which encapsulates the
reply and sends it to the remote procedure
call component.

* Once the remote procedure call has the reply,

it makes it available to the client ¢, which un-
blocks and continues. Note how the remote

EuroPLoP '18, July 4-8, 2018, Irsee, Germany

RIGHTS

procedure call acts as a synchronization mech-
anism between client and server.

— Synchronization Analysis. This section describes

the

advantages and disadvantages of the Remote

Procedure Call idiom as a base for the synchro-
nization code proposed [11].
(a) Advantages

*

Multiple parallel worker components can be
created in different address spaces of the com-
puters that make up the cluster, as a dis-
tributed memory parallel platform. They are

able to execute simultaneously, non-deterministically

and at different relative speeds. All can execute

independently, synchronizing to communicate.

Synchronization is achieved by blocking the

client until it receives a reply from the server.
When implementing remote procedure calls,
blocking is more manageable than non-blocking;:
remote procedure call implementations map
well onto a blocking communication paradigm.

Each worker component works its own address

space. No other component interferes during

communication.

Data to be sorted is passed as arguments of

the remote procedure calls. The integrity of

arguments and results is maintained during all

communication.

(b) Liabilities

*

An implementation issue for remote procedure
calls in this application example is the num-
ber of calls that can be in progress at any
time from different threads within the man-
ager component. [t is important that a number
of worker components on a computer within
a distributed system should be able to exe-
cute simultaneously. Thus, it may be the case
that the manager component is composed as
a multi-threaded component, in order to re-
ceive responses and request work from a larger
number of workers.

It is commonly argued that the simple and
efficient remote procedure call can be used
as a basis for all distributed communication
requirements of the present N Body Simula-
tion. However, there are variations that can
be applied here. Such variations include (a)
a simple send for event notification, with no
requirement for reply, (b) an asynchronous ver-
sion of a remote procedure call that requests
the server to perform the operation and keep
the result so the client can picks it up later,
(¢) a stream protocol for different sources and
destinations, such as terminals, I/O and so on.

J. Ortega-Arjona

4 IMPLEMENTATION

In this section, the communication components and their
respective remote procedure call components are implemented
as described in the Detailed Design step, using the Java
programming language [12, 13]. So, the implementation is
presented here for developing the RR as communication and
synchronization components. Nevertheless, this design and
implementation of the whole parallel software system goes
beyond the actual purposes of the present paper.

4.1 Communication components —
Remote Rendezvous

A class RemoteProcedureCall is used as the synchroniza-
tion mechanism component of several components of the
RR pattern. For example, let us consider the synchroniza-
tion within the communication between a Worker and a
MultithreadManager, using remote procedure calls [13].

class Worker implements Runnable {

private RemoteProcedureCall rpc; // reference to rpc
private Object data; // Data to be processed
private Object result; // Result from the call

public void run(){
rpc = new RemoteProcedureCall(socket s);
while(true){

result = rpc.getRequest(data);

The MultithreadManager receives this remote call as fol-
lows:

class MultithreadManager implements Runnable {

RemoteProcedureCall rpc; // reference to rpc
Body datall; // Data to be processed

Body subDatal[]; Data to be distributed

Body replyl[]l; // Results from worker threads
Body result[]; // Overall result

WorkerThread workerThread[];

int numWorkers;

Boolean request = false; // is there a request?

private
private
private
private
private
private
private
private

//Function called by the rpc
private void performRequest(Body d[1){
data = d;
synchronized (this){
request = true;
this.notify();

}

public void run(){

Applying ldioms for Synchronization Mechanisms

//Wait until someone make a request
while(true){
synchronized(this){
while(!request){
try{wait(;}
catch(InterruptedException e){}
}
}
//Create worker threads
for(int i=0;i<numWorkers;i++){
subdata = getNextSubData(data,i);
workerThread[i] = new workerThread(subData) ;
}
//Wait for all workers termination
for(int i=0;i<numWorkers;i++){
replyl[i] = workerThread[i].returnResult();
try{
workerThread[i].join();
}
catch(InterruptedException e){}
}
result = gatherReplies();
rpc.makeReply (result) ;

Notice the way both components rely on a remote pro-
cedure call component to exchange and distribute Body val-
ues as data and results of the computation. Hence, the suc-
cessful operation of the communication structure relies on
how the remote procedure call component implements the
methods of the interface RemoteProcedureCallInterface:
makeRequestWaitReply (), getRequest (), and makeReply ().
This is shown in the following section.

4.2 Synchronization Mechanism — Remote
Procedure Calls in Java

Based on the Remote Procedure Call idiom and their imple-

mentation in the Java programming language, the basic syn-

chronization mechanism that controls the communication be-

tween the Worker components and the MultithreadedManager

is presented as follows:

import java.net.*;
class RemoteProcedureCall extends UnicastRemoteObject
implements RemoteProcedureCalllnterface {
protected Object data;
protected Object reply;

private MultithreadedManager mm;

private MessagePassing in = null;
private MessagePassing out = null;

public RemoteProcedureCall(Socket socket) {

this.in = new ObjPipedMessagePassing(socket);

RIGHTS LI N '-"l}

EuroPLoP '18, July 4-8, 2018, Irsee, Germany

this.out = this.in;

}

public Object clientMakeRequestAwaitReply(Object m) {
send(in, m);
return receive(out);

}

public Object serverGetRequest() {
return receive(in);

}

public void serverMakeReply(Object m) {
send(out, m);

}

The class RemoteProcedureCall implements a two-way
flow of information based on sockets, as a one-way flow of
information between message passing sender and receiver.
The MultithreadedManager component sends an object to
a Worker that represents a request, creates a thread to
manage it, which blocks waiting for the Worker’s reply. On
its side, each Worker blocks waiting for a request. When
it gets such a request, computes the reply, and sends it
to the MultithreadedManager component, unblocking its
associated thread. As described in the RR pattern, the
MultithreadedManager spawns ofl threads to handle the
requests, thus being able to concurrently manage several
requests.

Notice that the MultithreadedManager acts as a call dis-
tributor: it waits for requests from the Worker components
that are able to do some work. The MultithreadedManager
sends a work command to each Worker components, which
sends a result back later in another call. Notice that this part
of the functionality of the RR pattern is not shown in this
code.

The Remote Procedure Calls here are based on synchro-
nous message passing rather than asynchronous because
buffering is unnecessary and would waste space; any client
blocks on the send in synchronous case and, on the receive in
asynchronous case. Hence, there is no need of synchronized
methods, because synchronization is handled inside the send
and receive methods. This method should be synchronized if
there are multiple client threads sharing this object.

Finally, it is important to notice that a deadlock possibility
exists: if the server makes another call to serverGetRequest ()

before calling serverMakeReply () then this RemoteProcedureCall

object is deadlocked (assuming just one client is using this
object, the intended situation) in the sense that the client
is blocked on receive(out) and the server is blocked on
receive(in). This still needs to be fixed for the present
implementation.

5 SUMMARY

The ISM are applied here along with a method. In order to
show how to apply an idiom that copes with the requirements
of the communication components present in the Manager
Workers solution to the N Body Simulation. The main ob-
jective of this paper is to demonstrate, with a particular

EuroPLoP '18, July 4-8, 2018, Irsee, Germany J. Ortega-Arjona

example, the detailed design and implementation that may
be guided by a selected idiom. Moreover, the application of
the ISM and the method for selecting them is proposed to
be used during the Detailed Design and Implementation for
other similar problems that involve synchronous distribution
of data, executing on a distributed memory parallel platform.

6 ACKOWLEDGEMENTS

The author would like to thank Victor Sauermann, my shep-
herd for EuroPLoP 2018, for his valuable comments, as well
as the attendants to the Writers” Workshop group, for their
greatly helpful suggestions.

REFERENCES

[1] P. Brinch-Hansen, Structured Multiprogramming. ~Communica-
tions of the ACM, Vol. 15, No. 17. July, 1972.

[2] P. Brinch-Hansen, The Programming Language Concurrent Pas-
cal. TEEE Transactions on Software Engineering, Vol. 1, No. 2.
June, 1975.

[3] P. Brinch-Hansen Distributed Processes: A Concurrent Program-
ming Concept., Communications of the ACM, Vol.21, No. 11,
1978.

[4] E.W. Dijkstra Co-operating Sequential Processes, In Program-
ming Languages (ed. Genuys), pp.43-112, Academic Press, 1968.

[5] M. Fowler, UML Distilled. =~ Addison-Wesley Longman Inc., 1997.

[6] C.A.R. Hoare, Towards a theory of parallel programming. Op-
erating System Techniques, Academic Press, 1972.

[7] C.A.R Hoare, Monitors: An Operating System Structuring Con-
cept. Communications of the ACM, Vol. 17, No. 10. October,
1974.

[8] C.A.R. Hoare Communicating Sequential Processes. ~Communi-
cations of the ACM, Vol.21, No. 8, August 1978.

[9] J.L. Ortega-Arjona The Manager-Workers Pattern. An Activ-
ity Parallelism Architectural Pattern for Parallel Programming.,
Proceedings of the 9th European Conference on Pattern Languages
of Programming and Computing (EuroPLoP2004), Kloster Irsee,
Germany, 2004.

[10] J.L. Ortega-Arjona Design Patterns for Communication Com-
ponents, Proceedings of the 12th European Conference on Pat-
tern Languages of Programming and Computing (EuroPLoP2007),
Kloster Irsee, Germany, 2007.

[11] J.L. Ortega-Arjona Patterns for Parallel Software Design. John
Wiley & Sons, 2010.

[12] J.L. Ortega-Arjona Applying Architectural Patterns for Paral-
lel Programming. An N Body Simulation, Proceedings of the
2nd Asian Conference on Pattern Languages of Programs (Asian-
PLoP2011), Tokyo, Japan, 2011.

[13] J.L. Ortega-Arjona Applying Design Patterns for Communica-
tion Components. Communication between Manager and Worker
components for an N-Body Simulation., Proceedings of the
Workshop on Parallel Programming Patterns (ParaPLoP2011),
Carefree, Arizona, USA, 2011.

RIGHTSE LI MN iy

