EuroPLoP '18, July 4-8, 2018, Irsee, Germany

J. Ortega-Arjona

Applying Design Patterns for Communication Components

Communicating Parallel Layer components for the Fast Fourier Transform

Jorge L. Ortega-Arjona
Departamento de Matematicas
Facultad de Ciencias, UNAM
jloa@ciencias.unam.mx

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy oth-
erwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and /or a fee. Request
permissions from permissions@acm.org.

EuroPLoP 18, July 48, 2018, Irsee, Germany

© 2018 Copyright held by the owner/author(s). Publication
rights licensed to ACM.

ACM ISBN 978-1-4503-6387-7/18/07.
https://doi.org/10.1145/3282308.3282336

ABSTRACT

The Design Patterns for Communication Components is a
collection of patterns related with a method for developing the
communication sub-systems of parallel software systems. The
application of these design patterns take as input information
(a) the architectural pattern of the overall parallel software
system, (b) the memory organization of the parallel hardware
platform, and (¢) the type of synchronization required.

In this paper, it is presented the application of the Design
Patterns for Communication Components to communicate
components for a parallel implementation of the the Fast
Fourier Transform, within the Communication Design stage
of the Pattern-based Parallel Software Design Method. In
a previous paper, this method has been used in a previous
stage, in the Coordination Design stage, selecting the Parallel
Layers architectural patterns as the main coordination, which
depends on the features of order in data and algorithm of
the Fast Fourier Transform.

CCS CONCEPTS

e Software and its engineering — Cooperating com-
municating processes; Cooperating communicating
processes; Object oriented architectures;

KEYWORDS

Design Patterns, Communication Components, Fast Fourier
Transform

RIGHTS LI N '-"l}

ACM Reference Format:

Jorge L. Ortega-Arjona. 2018. Applying Design Patterns for Com-
munication Components: Communicating Parallel Layer compo-
nents for the Fast Fourier Transform. In 23rd European Confer-
ence on Pattern Languages of Programs (EuroPLoP ’18), July
4-8, 2018, Irsee, Germany. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3282308.3282336

1 INTRODUCTION

Parallel programming is characterized by a growing set of par-
allel hardware architectures, programming paradigms, and
parallel languages. This situation makes difficult to propose
just a single approach containing all the details to design
and implement communication components for all parallel
software systems. Hence, the Design Patterns for Commu-
nication Components [15, 17] are proposed as an effort to
help a programmer to design the communication components
depending on particular characteristics and features of the
communication to be carried out between the processing
components, when designing a parallel program.

The Design Patterns for Communication Components fo-
cus on describing and refining the communication components
of a parallel program, by describing common programming
structures used for communicating, exchanging data or re-
questing operations, between processing components. Their
application directly depends on the Architectural Pattern
for Parallel Programming [13, 16, 17] which they are part of,
detailing a communication and synchronization function as
a local problem, and providing a form as a local solution of
software components for such a communication problem.

In this paper, it is presented the application of the mul-
tiple remote call pattern for designing the communication
components of a parallel program that solves the Fast Fourier
Transform. For this problem, the paper “Applying Architec-
tural Patterns for Parallel Programming. The Fast Fourier
Transform” [18] has already presented the Parallel Layers pat-
tern for designing the coordination level of the whole parallel
program. Here, this paper continues and complements the de-
sign of the whole parallel program, by applying the multiple
remote call design pattern for continuing the design of the
whole parallel program that solves the Fast Fourier Trans-
form. The design development here is part of the method for
designing parallel programs as presented in the book “Pattern
for Parallel Software Design [17]. However, in this paper, only
the Communication Design is specifically performed to solve
the communication requirements of the Fast Fourier Trans-
form, making use of Design Patterns for Communication

Applying Design Patterns for Communication Components

Components [15, 17], taking information from the architec-
tural decisions in [18], and providing elements about the
design and implementation of communication components
for the Fast Fourier Transform.

2 BACKGROUND: PARALLEL
LAYERS PATTERN FOR THE FAST
FOURIER TRANSFORM

In the paper “Applying Architectural Patterns for Parallel
Programming. The Fast Fourier Transform” [18], the Parallel
Layers Architectural Pattern has been selected as a viable
solution for the Fast Fourier Transform. Now, in order to
apply the Design Patterns for Communication Components
for developing the communication components for this ex-
ample, some information related with the Parallel Layers
pattern and the parallel platform and programming language
is required. This information is summarized as follows.

2.1 The Parallel Layers pattern

The algorithmic solution for the Fast Fourier Transform is
defined in terms of dividing the data set to be operated into
subsets, which are again subdivided, over and over, until
a simple operation can be achieved. The result is obtained
and sent to the above layer. Notice that the operations are
independent from each other. So, the Parallel Layers (PL)
pattern has been chosen as an adequate solution for the Fast
Fourier Transform. The design of the parallel software system
has been continued based on the Solution section of the PL
pattern, as briefly described as follows [14, 17, 18].

e Description of the coordination. The Parallel Lay-
ers pattern makes use of functional parallelism to ex-
ecute sub-algorithms, allowing the simultaneous exis-
tence and execution of more than one instance of a layer
component through time. Each of these instances are
composed of the simplest sub-algorithms. In a layered
system, an operation involves the execution of opera-
tions in several layers. These operations are triggered
by a call, and data is vertically shared among layers
in the form of arguments for these function calls. Dur-
ing the execution of operations in each layer, usually
the higher layers have to wait for a result from lower
layers. However, if each layer is represented by more
than one component, they can be executed in parallel
and service new requests. Therefore, at the same time,
several ordered sets of operations are carried out by the
same system. Several computations can be overlapped
in time [14, 17, 18].

e Structure and dynamics

(1) Structure. When applying the PL pattern for the

Fast Fourier Transform, the data set is divided over
and over until a simple operation can be carried out
simultaneously to obtain a basic transform. Once
this is achieved, the result is sent back to the com-
ponent above, and the transform is performed again,
over and over, until reaching the root component
of the whole structure. Hence, the structure of the

RIGHTS LI N '-"l}

EuroPLoP '18, July 4-8, 2018, Irsee, Germany

‘ Pl:Layer ‘ P3:Layer

VAN

P3:Layer ‘ ‘ P7:Layer ‘

‘ PO:Layer

P4:Laver‘ ‘ P2:Layer

Pﬁ:Layer‘ ‘ Pl:Laver‘ ‘ P5:Layer

Figure 1: Object Diagram of PL for solving the Fast
Fourier Transform.

actual solution involves a tree-like logical structure.
Thus, the solution is presented as a tree of processing
layer components. These are identical components
that simultaneously exist and process during the ex-
ecution time. An Object Diagram, representing this
structure is shown in Figure 1 [17, 18].

(2) Dynamics. A scenario to describe a basic run-time be-
havior of the PL pattern for solving the Fast Fourier
Transform is described as follows. Notice that all
layer components, as basic processing software com-
ponents, are active at the same time. Every layer
component performs the same division, and once the
set is completely divided, the layer component sorts
its subset, providing its result to the layer component
above. This operation is repeated until the whole set
is sorted and made available to the root component
of the tree structure as shown in Figure 2 [17, 18].

PU:Layer ‘ PLiLayer ‘ P2:Layer ‘ P3:Layer ‘ PA:Layer ‘ PS:Laer ‘ PGLayer ‘ P7:Layer ‘
T T T T T T T T
n/2
WA a
m |
n/8

/8
Y /8 /s

/8
-
:l/ﬂ("/& :lfftrnlx) [fi(n/8) [(n/8)| ffi(n/S)) :| [f(n/8) fft(n/s| :| [fni8)
[i) () [ft(nr4) [f(ni4)

m‘ n/4
(@) | sz
]
Ll
1]
T T T T T T T T

Figure 2: Sequence Diagram of PL for the Fast
Fourier Transform.

2.2 Information about parallel platform
and programming language

The parallel platform available for this parallel program is a

cluster of computers, specifically, a dual-core server (Intel dual

Xeon processors, 1 Gigabyte RAM, 80 Gigabytes HDD) 16

nodes (each with Intel Pentium IV processors, 512 Megabytes

EuroPLoP '18, July 4-8, 2018, Irsee, Germany

RAM, 40 Gigabytes HDD), which communicate through an
Ethernet network. The parallel application for this platform
is programmed using the Java programming language [18].

3 COMMUNICATION DESIGN

3.1 Specification of Communication
Components

e The scope. This section takes into consideration the

basic information about the parallel hardware platform
and the programming language used, as well as the
PL pattern as the selected coordination for solving the
Fast Fourier Transform. The objective is to look for the
relevant information for choosing a particular design
pattern as a communication structure.
Based on the information about the parallel platform
(a distributed memory cluster), the programming lan-
guage (Java) and the description of software compo-
nents for the PL pattern presented in the previous sec-
tion, the procedure for selecting a Design Pattern for
the Communication Components for the Fast Fourier
Transform is presented as follows [15, 17]:

(1) Consider the architeclural pattern selected in the pre-

vious step. From the PL pattern description, the

design patterns which provide communication com-
ponents and allow the behavior as described by this
architectural pattern for a coordination are the Mul-
tiple Local Call pattern and the Multiple Remote

Call pattern [15, 17].

Select the nature of the communicating components.

Considering that the parallel hardware platform to

be used has a distributed memory organization, the

nature of the communicating components for such
memory organization is considered to be message
passing or remote call.

Select the type of synchronization required for the

communication. Normally, the communication be-

tween software components that act as a root and
two or more children makes use of a synchronous
communication. In a synchronous communications,
the root software component calls to its children and
blocks, waiting for receiving a response from them.

Once the response in received, this software compo-

nent operates on the results from its children, and

acting as a child, provides a results to its own root
software component.

Selection of a design pattern for communication com-

ponents. Considering (a) the use of the PL pattern,

(b) the distributed memory organization of the par-

allel platform, and (c) the use of synchronous com-

munications, therefore the Multiple Remote Call
pattern is proposed here as the base for designing
the communications between root and children. Let
us consider the Context and Problem sections of this

pattern [15, 17]:

— Context: ‘A parallel program is to be developed
using the Parallel Layers architectural pattern as

(2

~

(3

=

(4

N

RIGHTSE LI MN iy

J. Ortega-Arjona

a functional parallelism approach in which an algo-
rithm is partitioned among autonomous processes
(layer components) that make up the processing
components of the parallel program. The parallel
program is to be developed for a distributed mem-
ory computer, but also can be used with a shared
memory computer. The programming language to
be used has rendezvous or remote procedure calls
as synchronization mechanisms for remote process
communication’.

— Problem: ‘A collection of distributed, parallel
layer components need to communicate by issu-
ing multiple remote procedure calls, synchronously
waiting to receive the multiple results of those calls.
All data is contained in a distributed layer compo-
nent and only disseminated to layer components
below, or gathered and passed to layer components
above’.

From both these descriptions, it is noticeable that

for the PL pattern, on a distributed memory par-

allel platform, and using Java as the programming
language, the choice for developing the communica-
tion components for this example is the Multiple

Remote Call pattern. The use of a distributed

memory parallel platform implies using remote calls,

and it is known that the Java programming language
counts with the elements for developing such calls.

Moreover, this calls consider a synchronous commu-

nication scheme between a ‘client’ and its ‘server’.

Therefore, this completes the selection of the Design

Pattern for Communication Components of the Fast

Fourier Transform. The design of the parallel soft-

ware system continues using the Multiple Remote

Call pattern’s Solution section as a starting point for

communication design and implementation.

e Structure and dynamics. This section takes infor-
mation of the Multiple Remote Call design pattern,
expressing the interaction between its software com-
ponents that carry out the communication between
parallel software components for the actual example.

(1) Structure. The structure of this pattern applied for
designing and implementing remote call communi-
cation components for the PL pattern is shown in
Figure 3 using a UML Collaboration Diagram [6]. No-
tice that this component structure allows a synchro-
nous, bidirectional communication between a root
component and a group of children. The synchronous
feature is achieved by using a barrier synchronization
on the root side, so the root component does wait
for all its children [15, 17].

(2) Dynamics. This pattern actually performs a groups of
remote calls within the available distributed memory
parallel platform. Figure 4 shows the behavior of the
participants of this pattern for the actual example.
In this scenario, a group of bi-directional, synchro-
nous remote calls is carried out, as follows:

Applying Design Patterns for Communication Components

— The root component issues a remote procedure call
through a remote procedure call component to the
multithread server, which executes on a different
processor within the distributed memory computer.
Once this remote procedure call has been issued,
the root component blocks, waiting for a result.

— The multithread server receives the remote call
from the remote procedure call component through
the network and creates a group of client threads to
distribute the call to child components executing
on other computers.

root:Layer
[k
:RemoteProcedureCall
(R}
:MultiThreadServer

= N

:ClientThread

Network

:ClientThread

v
:RemoteProcedureCall
1K)

child2:Iayer

ik
:RemoteProcedureCall
1K

childl:Layer

Figure 3: UML Collaboration Diagram of the Mul-
tiple Remote Call pattern used for synchronous re-
mote calls between root and two children of the PL
solution to the Fast Fourier Transform.

child?: Laven{

Client:Thread|

childl :Lavel‘
T

Client: Thread‘

|

root:La yg{ ‘ :MuluThreadServ%

T

makeR

0 L‘
itReply ()
% create ()
[
create() 0

—

Repl]

Repl

gatherRepllies ()

Repl.
jly 0
— - S

T T - T T

Figure 4: UML Sequence Diagram for the Multiple
Remote Call pattern applied for synchronous remote
calls between root and two children of the PL solu-
tion to the Fast Fourier Transform.

RIGHTS L

J 0
nest() ctren]
doRequest (£ itReply ()
doRequest ()
Repl.
‘makerdply ()
Repl
yO P

3

EuroPLoP '18, July 4-8, 2018, Irsee, Germany

— Once created, each client thread is passed part
of the data and transmits it by issuing a remote
procedure call through a new remote procedure
call component, one for each client thread. Remote
procedure call components have been proposed and
used as communication and synchronization mech-
anisms for distributed memory environments: here
they are used to maintain the synchronous feature
of communications within the whole Parallel Lay-
ers structure, distributed among several processors.
Once every call is issued to remote processes, all
the client threads wait until they receive the results
from the remote procedure call components.

— Once each child component produces a result, it
returns it through the network to the remote pro-
cedure call component that originally called it, and
thus to its respective client thread.

— Each client thread passes its result to the multi-
thread server. Once results have been received from
all client threads, the multithread server assembles
them into a single result, which is passed through
the network via the remote procedure call compo-
nent to the remote root component that originally
issued the call.

Functional description of software components. This
section describes each software component of the
Multiple Remote Call pattern as the participant of
the communication sub-system, establishing its re-
sponsibilities, input, and output.
(a) Multithread server. The responsibilities of the
multithread server component are to receive re-
mote procedure calls and their respective data,
as arguments, from a higher-layer component, di-
vide the data and create a client thread for each
data subset. The server then waits for all client
threads to produce their results: once received,
the multithread server assembles an overall result
and returns it to the higher-layer component that
originally called it.
Client thread. The responsibilities of each client
thread, once created, are to receive a local call from
the multithread server with a subset of data to be
operated on, and to generate a remote procedure
call to a single layer component on the layer be-
low. Once the called procedure produces a result,
the client thread retrieves it, returning it to its
multithread server.

Remote procedure call. The remote procedure

call components in this pattern have two main re-

sponsibilities: (a) to serve as a communication and
synchronization mechanism, allowing bidirectional
synchronous communication between any two com-
ponents it connects (which execute on different
computers), and (b) to serve as a remote com-
munication stage within the distributed memory
organization between the components of adjacent

=

(b)

(c)

EuroPLoP '18, July 4-8, 2018, Irsee, Germany

layers, decoupling them so that communications be-

tween them are performed synchronously. Remote

procedure calls are normally used for distributed
memory environments.

(4) Description of the communication. The Multiple Re-
mote Call pattern provides a bidirectional, one-to-
many and many-to-one, remote communication sub-
system for the Fast Fourier Transform solution, based
on the PL pattern. This subsystem has the form of a
tree-like communication structure. It describes a set
of communication components that disseminate re-
mote calls to multiple communication components ex-
ecuting on different processors or computer systems.
These communication components act as surrogates
or proxies of the processing components, operating
local subsets of double variables, and then, return-
ing a sorted array. Hence, this pattern is used to
distribute a part of the whole set to be transformed
to other processing components in lower layers, exe-
cuting on other memory systems. Both the higher-
and lower-layer components are allowed to execute
simultaneously. However, they must communicate
synchronously during each remote call over the net-
work of the distributed memory parallel system.

(5) Communication Analysis. This section describes the
advantages and disadvantages of the Multiple Re-
mote Call pattern as a base for the communication
structure proposed.

(a) Advantages

— The Multiple Remote Call pattern preserves the
precise order of transforming operations, since
it represents a single stage within a cascade of
synchronous remote procedure calls. Hence the
multithread server is able to continue only when
all the child components of a layer have com-
pleted their operations.

— As only one multithread server is used to call
and synchronize several local client threads, cor-
responding to several child components, one-to-
many communication is maintained during the
distribution of data and many-to-one when re-
trieving results. This is useful from a reusability
standpoint.

— As only synchronous calls are allowed, the in-
tegrity and order of the sorted results are pre-
served.

— The implementation includes the use of remote
procedure calls as synchronization mechanisms.
This simplifies their implementation and use for
the distributed memory parallel platform avail-
able.

— All communications are synchronous.

(b) Liabilities

— The use of the Multiple Remote Call pattern
may produce long delays in communication be-
tween remote components on different layers due
to the use of remote calls through the network

RIGHTSE LI MN iy

J. Ortega-Arjona

between components. As every layer component
has to wait until all operations on the next lower
layer are carried out, communication through the
entire distributed hierarchical structure could be
slowed due to the number of component per layer
and the volume of communication between root
and child components.

4 IMPLEMENTATION

In this section, all the software components described in
the Communication Design step are considered for their
implementation using the Java programming language. Here,
it is only presented the implementation of the communication
sub-system, which interconnects processing components that
implement the actual computation that is to be executed in
parallel [18]. So, the implementation is presented here for
developing the multiple remote calls as communication and
synchronization components. Nevertheless, this design and
implementation of the whole parallel software system goes
beyond the actual purposes of the present paper.

4.1 Synchronization Mechanism — Remote
Procedure Calls

Based on the Java programming language, an interface for the
remote procedure call that provides the basic functionalities
of a synchronization mechanism for the Multiple Remote Call
pattern is presented as follows:

interface RemoteProcedureCall {
public abstract Object makeRequestWaitReply(Object m);
public abstract Object getRequest();
public abstract void makeReply();

The interface RemoteProcedureCall presents three ab-
stract methods which allow to produce the calls between
distributed objects and allow a synchronous communication
between root and child components. This interface is used
in the following implementation stage as the basic synchro-
nization element of the remote call components.

The methods of the interface RemoteProcedureCall are
normally used in a common ‘client-server’ way: the method
makeRequestWaitReply () is used by any ‘client’ component
to generate a remote procedure call. It then blocks until
it receives a result. The method getRequest () is used by
any ‘server’ to receive the remote procedure call. Finally, the
method makeReply () is used by the ‘server’ to communicate
a result to the client remotely, unblocking it.

4.2 Communication components

Using the interface RemoteProcedureCall from the previous
section, here it is used as the synchronization mechanism
component as described by the Multiple Remote Call pattern,
in order to be implemented within the class Layer. In the
current example, the any layer component, acting as a root
(or client), performs the method getRequest(), directed to

Applying Design Patterns for Communication Components

the remote multithread server through the respective remote
procedure call component, as follows:

class Layer implements Runnable {

private RemoteProcedureCall rpc; // reference to rpc
private Object data; // Data to be processed
private Object result; // Result from the call

public void run(){
rpc = new RemoteProcedureCall(Socket s);
while(true){

result = rpc.getRequest(data);

Notice that the RemoteProcedureCall component has a
Socket as argument. This means that this component makes
use of the network to carry out its operation, translating the
call into a synchronous remote call to the MultithreadServer
through the method makeRequestWaitReply ()

The MultithreadServer that receives this remote call is
shown as follows:

class MultithreadServer implements Runnable {

private RemoteProcedureCall rpc; // reference to rpc
private double datall; // Data to be processed

private double subDatal[]; Data to be distributed
private double reply[l; // Results from client threads
private double result[]; // Overall result

private ClientThread clientThreadl[];

private int numClients;

private Boolean request = false; // is there a request?

//Function called by the rpc
private void performRequest(double d[]){
data = d;
synchronized (this){
request = true;
this.notify();

}

public void run(){
//Wait until someone make a request
while(true){
synchronized(this) {
while(!request)q{
try{wait();}
catch(InterruptedException e){}

}
//Create childthreads
for(int i=0;i<numClients;i++){
subdata = getNextSubData(data,i);
clientThread[i] = new ClientThread(subData) ;
}

//Wait for all child termination

RIGHTS LI N '-"l}

EuroPLoP '18, July 4-8, 2018, Irsee, Germany

for(int i=0;i<numClients;i++){
reply[i] = clientThread[i].returnResult();
try{
clientThread[il.join();
}
catch(InterruptedException e){}
}
result = gatherReplies();
rpc.makeReply (result) ;

The MultithreadServer is in charge of creating several
new ClientThreads. These handle that part of the double
data to be processed by each call: after creating all of them,
the MultithreadServer waits until all the results are re-
ceived. The MultithreadServer then gathers all results and
sends them back to the root component through the remote
procedure call component, which keeps the root component
waiting until it receives the results.

Now, the code for the ClientThread is shown as follows.

class ClientThread extends Thread{

private RemoteProcedureCall rpc; //reference to rpc
private double datall; //Data to be processed
private double result[]; //Result from the call
private Boolean isResult = false; //Is there result

public ClientThread(double data){
this.data = data;
this.start();

}

public void run(){
synchronized(result){
result = doRequest();
isResult = true;
result.notify();

}
private []double doRequest(){

rpc = new RemoteProcedureCall(socket);

return rpc.getRequest(data);

}

public Object returnResult(){
synchronized(result){
while(!isResult){

try{wait();} //Wait for result become available

catch(InterruptedException e){}

}

return result[];

EuroPLoP '18, July 4-8, 2018, Irsee, Germany

Each ClientThread acts as a single server for the child
components in the layer below, this is, the components in
one layer are the ‘clients’ for the lower layers, and at the
same time the ‘servers’ for the higher layers. Notice that
the code of the respective RemoteProcedureCall component
again makes use a socket, allowing it to make use of the
network to communicate with the child layer components.

FEach ClientThread starts working when created, perform-
ing the doRequest () method and receiving the double data
it should send to its respective child layer components. The
ClientThread does this through a RemoteProcedureCall
component. Once it receives a result, the ClientThread
sends it back to the MultithreadServer, which assembles
the overall result and replies to the root layer component
through the RemoteProcedureCall that originally issued the
whole call.

5 SUMMARY

The Design Patterns for Communication Components are
applied here along with a method for selecting them, in order
to show how to cope with the requirements of communication
present in the Fast Fourier Transform. The main objective
of this paper is to demonstrate, with a particular example,
the detailed design and implementation that may be guided
by a selected design pattern. Moreover, the application of
the Design Patterns for Communication Components and
the method for selecting them is proposed to be used during
the Communication Design and Implementation for other
similar problems that involve the distribution of data between
identical processing components executing on a distributed
memory parallel platform.

6 ACKOWLEDGEMENTS

The author would like to thank Niels Seidel, my shepherd for
EuroPLoP 2018, for his valuable comments, as well as the
attendants to the Writers’” Workshop group, for their greatly
helpful suggestions.

REFERENCES

[1] G.R. Andrews Foundation of Multithreaded, Parallel and Dis-
tributed Programming., Addison-Wesley Longman, Inc., 2000.
Brinch-Hansen, P., Structured Multiprogramming. Communica-
tions of the ACM, Vol. 15, No. 17. July, 1972.

Brinch-Hansen, P., The Programming Language Concurrent Pas-

cal. IEEE Transactions on Software Engineering, Vol. 1, No. 2.

June, 1975.

[4] P. Brinch-Hansen Distributed Processes: A Concurrent Program-
ming Concept., Communications of the ACM, Vol.21, No. 11,
1978.

[5] E.W. Dijkstra Co-operating Sequential Processes, In Program-
ming Languages (ed. Genuys), pp.43-112, Academic Press, 1968.

[6] Fowler, M., UML Distilled. ~ Addison-Wesley Longman Inc., 1997.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

Design Patterns: Elements of Reusable Object-Oriented Systems.

Addison-Wesley, Reading, MA, 1994.

S. Hartley Concurrent Programming. The Java Programming

Language., Oxford University Press Inc., 1998.

Hoare, C.A.R., Towards a theory of parallel programming. Op-

erating System Techniques, Academic Press, 1972.

[10] Hoare, C.A.R., Monitors: An Operating System Structuring
Concept. Communications of the ACM, Vol. 17, No. 10. October,
1974.

2

3

[8

[9

RIGHTSE LI MN iy

J. Ortega-Arjona

[11] C.A.R. Hoare Communicating Sequential Processes. ~Commu-
nications of the ACM, Vol.21, No. 8, August 1978.

[12] S. Kleiman, D. Shah, and B. Smaalders Programming with
Threads, 3rd ed. SunSoft Press, 1996.

[13] J.L. Ortega-Arjona and G.R. Roberts Architectural Patterns
for Parallel Programming, Proceedings of the 3rd European
Conference on Pattern Languages of Programming and Computing
(EuroPLoP98), Kloster Irsee, Germany, 1998.

[14] J.L. Ortega-Arjona The Parallel Layers Pattern. A Functional
Parallelism Architectural Pattern for Parallel Programming.,
6th Latin American Conference on Pattern Languages of Pro-
gramming (SugarLoafPLoP 2007), Porto de Galinhas, Pernambuco,
Brasil. 25-31 May, 2007.

[15] J.L. Ortega-Arjona Design Patterns for Communication Com-
ponents, Proceedings of the 12th European Conference on Pat-
tern Languages of Programming and Computing (EuroPLoP2007),
Kloster Irsee, Germany, 2007.

[16] J.L. Ortega-Arjona Architectural Patterns for Parallel Program-
ming. Models for Performance Estimation, VDM Verlag, 2009.

[17] J.L. Ortega-Arjona Patterns for Parallel Software Design, John
Wiley & Sons, 2010.

[18] J.L. Ortega-Arjona Applying Architectural Patterns for Parallel
Programming. The Fast Fourier Transform., 19th European
Conference on Pattern Languages of Programming and Computing
(EuroPLoP2014), Kloster Irsee, Germany, 2014.

[19] Shalloway, A., and Trott, J.R., Design Patterns Explained: A
New Perspective on Object-Oriented Design. Software Pattern
Series. Addison-Wesley, 2002.

