EuroPLoP '18, July 4-8, 2018, Irsee, Germany

J. Ortega-Arjona

Applying Architectural Patterns for Parallel Programming

Solving the Laplace Equation

Jorge L. Ortega-Arjona
Departamento de Matematicas
Facultad de Ciencias, UNAM
jloa@ciencias.unam.mx

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy oth-
erwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and /or a fee. Request
permissions from permissions@acm.org.

EuroPLoP 18, July 48, 2018, Irsee, Germany

© 2018 Copyright held by the owner/author(s). Publication
rights licensed to ACM.

ACM ISBN 978-1-4503-6387-7/18/07.
https://doi.org/10.1145/3282308.3282335

ABSTRACT

The Architectural Patterns for Parallel Programming is a
collection of patterns related with a method for developing
the coordination structure of parallel software systems. These
architectural patterns take as input information (a) the avail-
able parallel hardware platform, (b) the parallel programming
language of this platform, and (¢) the analysis of the problem
to solve, in terms of an algorithm and data.

In this paper, it is presented the application of the architec-
tural patterns along within the Coordination stage, as part
of the Pattern-based Parallel Software Design Method, which
aims for developing a coordination structure for solving the
Laplace Equation. The Coordination stage here takes the in-
formation from the Problem Analysis presented in Section 2,
selects an architectural pattern for the coordination in Section
3, and provides some elements about its implementationin
Section 4.

CCS CONCEPTS

e Software and its engineering — Cooperating com-
municating processes; Cooperating communicating
processes; Object oriented architectures;

KEYWORDS

Architectural Patterns, Parallel Programming, Laplace Equa-
tion

ACM Reference Format:

Jorge L. Ortega-Arjona. 2018. Applying Architectural Patterns for
Parallel Programming: Solving the Laplace Equation. In 23rd Eu-
ropean Conference on Pattern Languages of Programs (EuroPLoP

RIGHTS LI N '-"l}

'18), July 4-8, 2018, Irsee, Germany. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3282308.3282335

1 INTRODUCTION

A parallel program is the specification of a set of processes
executing simultaneously, and communicating among them-
selves in order to achieve a common objective. This definition
is obtained from the original research work in parallel pro-
gramming provided by E.W. Dijkstra [2], C.A.R. Hoare [5],
P. Brinch-Hansen [1], and many others, who have established
the main basis for parallel programming today. Specifically,
obtaining a parallel program from an algorithmic description
is the main objective of the area of Parallel Software Design.

Practitioners in the area of parallel programming recognize
that the success of a parallel program is able to achieve —
commonly, in terms of performance— is affected by three main
factors [8, 9]: (a) the hardware platform, (b) the programming
language, and (¢) the problem to solve. Nevertheless, from a
review of literature, it is noticeable that most of research in
parallel systems and parallel programming has normally been
devoted to the first two factors: the hardware platform and
the programming language. It is just until a few years ago
that several researchers have focused on parallel programming
from the point of view of the problem to solve, proposing the
area of Parallel Software Design in order to study how and
at what point the organization of a parallel program affects
the development and performance of a parallel system.

Parallel Software Design proposes programming techniques
to deal with the parallelization of a problem, described in
algorithmic terms. The research in the area covers several
approaches that provide forms to organize software with
relatively independent parts which efficiently make use of
multiple processors. As stated before, the goal is to obtain a
parallel program from an algorithmic description. Neverthe-
less, designing parallel programs can be frustrating [9]:

e There are lots of issues to consider when parallelizing an
algorithm. How to choose a coordination structure that
is not too hard to program and that offers substantial
performance compared to uniprocessor execution?

e The overheads involved in synchronization among mul-
tiple processors may actually reduce the performance
of a parallel program. How to anticipate and mitigate
this problem during testing and evaluation?

e Like many performance improvements, parallelizing
increases the complexity of a program. How to manage
such a complexity?

Applying Architectural Patterns for Parallel Programming

These are tough problems: we do not yet know how to
solve an arbitrary problem efficiently on a parallel system
of arbitrary size. Hence, Parallel Software Design, at its
actual stage of development, does not (cannot) offer universal
solutions, but tries to provide some simple ways to get started.

Simply put, architectural patterns allow software designers
and developers to understand complex software systems in
larger conceptual blocks and their relations, thus reducing the
cognitive burden. Furthermore, architectural patterns provide
several “forms” in which software components of a parallel
software system can be structured or arranged, so the overall
structure of such a software system arises. Architectural
patterns also provide a vocabulary that may be used when
designing the overall structure of a parallel software system,
to talk about such a structure, and feasible implementation
techniques. As such, the Architectural Patterns for Parallel
Programming refer to concepts that have formed the basis
of previous successful parallel software systems. Examples of
Architectural Patterns for Parallel Programming are Parallel
Pipes and Filters, Parallel Layers, Communicating Sequential
Elements, Manager-Workers, and Shared Resource [6, 8, 9].

2 PROBLEM ANALYSIS — THE
LAPLACE EQUATION

The present paper attempts to demonstrate the use of the
Architectural Patterns for Parallel Programming for designing
a coordination structure that solves the Laplace Equation.
The objective is to show how an architectural pattern can be
selected so it deals with the functionality and requirements
present in this problem.

2.1 Problem Statement

Partial differential equations are commonly used to describe
physical phenomena that continuously change in space and
time. One of the most studied and well known of such equa-
tions is the Laplace Equation, which mathematically models
the steady-state heat flow in a region that exposes certain
dimensionality, with certain fixed temperatures on its bound-
aries. In the present example, the region is represented by a
two-dimensional entity, for example, a plate of homogeneous
material and uniform thickness. The surroundings of the
plate are perfectly insulated, and on the extremes, each point
keeps a known, fixed temperature. As heat flows through
the plate, the temperature of each point eventually reaches
a value or state in which such a point has a steady, time-
independent temperature maintained by the heat flow. Thus,
the problem of solving the Laplace Equation is to define the
equilibrium temperature u(z,y) for each point (z,y) on the
two-dimensional plate. Normally, the heat is studied as a
flow through an elementary piece of the plate, a finite ele-
ment. This element is represented as a small, two-dimensional
clement of the plate, with an area of Az x Ay (Figure 1).
Given the insulation surrounding the plate, there could
only be a flow through its two dimensions. At every point
(z,y), the velocity of the heat flow is considered to have a
horizontal flow component, v, and a vertical flow component

RIGHTSE LI MN iy

EuroPLoP '18, July 4-8, 2018, Irsee, Germany

vy, which are represented in terms of its temperature u(z, y)
by the equation:

ou
vy = —k@ (2)

This equation means that heat flow is proportional to
the temperature gradient, towards decreasing temperatures.
Moreover, in equilibrium, the element holds a constant amount
of heat, making its temperature u(z,y) a constant. Thus, in
the steady-state, this is expressed as:

vz Ovy

Jdx d_y

Combining this equation with the previous equation for

the velocity of flow, thus Laplace’s law for equilibrium tem-
peratures arises:

=0 (3)

2 2
T Zu_o o)
ox? Oy?

Known as the Laplace equation or equilibrium equation,
this equation is abbreviated and expressed in general terms

(and dimensions) as:

Viu=0 (3)

A function u(z,y) that satisfies this equation is known as a
“potential function”, and it is determined by boundary condi-
tions. By now, for the actual purposes, the Laplace Equation
allows to mathematically model the heat flow through a plate.
Nevertheless, in order to develop a program that numerically
solves this equation, it is still required to perform a series of
further considerations. Let us consider by now a thin plate,
for which temperatures are considered fixed at each extreme
(Figure 2).

In order to develop a program that models the Laplace
Equation, first it is necessary to obtain its discrete form. So,
the plate in Figure 2 is divided into elements, each element
with a size of a x a. This size is relatively very small regarding
the size of the whole plate, so the element can be considered
as a single point within the plate. So, this results on a divided
plate, in which three types of elements can be considered
(Figure 3).

AX

(x.y)

Figure 1: A small two-dimensional element.

EuroPLoP '18, July 4-8, 2018, Irsee, Germany

(1) Interior elements, which require computing their tem-
peratures, each one having to satisfy the Laplace equa-
tion.

(2) Extreme elements, which have fixed and given temper-
atures.

(3) Corner elements, which are not used.

The discrete solution of the Laplace Equation is based on
the idea that the heat flow through interior elements is due to
the temperature differences between an elements and all its
neighbors. Let us suppose the temperature of a single interior
element u(%, j), whose four adjacent neighboring elements are
w(i—1,7), u(i+1,7), u(z,7 — 1) and u(i, j + 1) (Figure 4).

Notice that for the case, a should be small enough so each
neighboring element’s temperature can be approximated. So,
the discrete heat equation is reduced to a difference equation.
Rearranging it, it is noticeable that for thermal equilibrium,
the temperature of a single element (%, j) in time, from one
thermal state to another, is:

1

u(t+1,4,7) & —[u(t, i—=1, j)+u(t, i+1, j)+u(t, i, j—1)Fu(t, i, j+1)]
4

(6)

u =0

uy =60 u="? u, =0

u, =100

Figure 2: A plate with fixed temperatures at each
extreme.

B
cle[E[E[E[E[E[E] [E[C
Elr[|t[1[t]t[1}[1]E
Elr|t[1[t]t[1}[1]E
Elr[t|t[1[t]t[1}[1]E
Elr[|t[i[t]t[1}[1]E

ad[BEli]]o]o]i|[i}1]E
Elr|t[r][r][t]t|1][1[E
RRRRRNREne
Elc]o]o[a[t]i[i}-[1]E
clE|E[E[E[E|E[E}--[E[C

Figure 3: A plate divided in three types of elements:

interior (I), extreme (E), and corner (C).

RIGHTS LI N '-"l}

J. Ortega-Arjona

This is the discrete equation to be used in order to obtain
a parallel numerical solution for the Laplace Equation.

2.2 Specification of the Problem

From the previous section, it is noticeable that using a plate
divided into n x n elements, the discrete form of the Laplace
KEquation implies a computation for each discrete elements
of the plate. Moreover, taking into consideration the time as
another dimension so the evolution of temperatures through
time can be observed, and solving it using a direct method on
a sequential computer, requires something like O(n®) units of
time. Suppose a numerical example: for a plate with, for exam-
ple, n = 65536, it is required to solve about the same number
of average operations, involving floating point coefficients.
Using a sequential computer with a clock frequency of about
1MHz, it would take about eight years for the computation.
Furthermore, notice that naive changes to the requirements
(which are normally requested when performing this kind
of simulations) produce drastic (exponential) increments of
the number of operations required, which at the same time
affects the time required to calculate this numerical solution.

e Problem Statement. The Laplace Equation, in its dis-
crete representation, and for a relatively large number
of elements in which a plate is divided, can be com-
puted in a more efficient way by:

(1) using a group of software components that exploit
the two-dimensional logical structure of the plate,
and

(2) allowing each software component to simultaneously
calculate the temperature value for all elements of
the plate at a given time step.

The objective is to obtain a result in the best possible
time-efficient way.

e Descriptions of the data and the algorithm. The rel-
atively large number of elements in which a plate is
divided and the discrete representation of the Laplace
Equation is described in terms of data and an algo-
rithm. The divided region is normally represented as
a large plate in terms of a (n + 2) x (n + 2) array of
elements which represent every discrete element of the
plate, and encapsulate some floating point data which

-

u(ij—1)

a u(i=1j)| u(ij) |u(i+1;j)

u(i,j+1)

Figure 4: An element u(i, j) and its four neighboring
elements.

Applying Architectural Patterns for Parallel Programming

represents temperature, as shown as follows. Thus, a
whole plate consists of n xXn interior elements and 4n+4
extreme elements. For example, in Java elements are
represented as objects of a class Element, as follows:

class Element implements Runnable{

private int i = -1;
private int j = -1;

private Element(int i, int j){
this.i = i;
this.j = j;
new Thread(this).start();

}

Each Element object is able to compute a local dis-
crete heat equation as a single thread. Thus, it ex-
changes messages with its neighboring elements (whether
interior or extreme) and computes its local tempera-
ture, as follows:

class Element implements Runnablef{

private int i = -1;
private int j = -1;

EuroPLoP '18, July 4-8, 2018, Irsee, Germany

o Information about parallel platform and programming
language. The parallel system available for this example
is a SUN SPARC Enterprise T5120 Server. This is a
multi-core, shared memory parallel hardware platform,
with 1 x 8-Core UltraSPARC T2, 1.2 GHz processors
(capable of running 64 threads), 32 Gbytes RAM, and
Solaris 10 as operating system [10]. Applications for
this parallel platform can be programmed using the
Java programming language [4].

o Quantified requirements about performance and cost.
This application example has been developed in or-
der to test the parallel system described in the pre-
vious point. The idea is to experiment with the plat-
form, testing its functionality in time, and how it maps
with a domain parallel application. So, the main ob-
jective is simply to test and characterize performance
(in terms of execution time) regarding the number of
processes/processors involved in solving a fixed size
problem. Thus, it is important to retrieve information
about the execution time considering several configura-
tions, changing the number of processes on this parallel,
shared memory platform.

3 COORDINATION DESIGN

In this section, the Architectural Patterns for Parallel Pro-

double temperature, received, total; gramming [6, 8, 9] are used along with the the information

for (int i = 0; i < iteratiomns; i++) { from the Problem Analysis, in order to apply an architectural
// Here the actual element exchanges data with pattern for developing a coordination that solves the Laplace
// its neighboring elements Equation.

public void run(){

total = 0.0;

for (i = 0; i < 4; i++) {
// Receive from neighboring elements
// and put it in the variable ‘received’
total += received;

}

temperature = total/4;

}

Each time step, a new temperature for the local Ele-
ment object is obtained from the previous tempera-
ture and the temperatures of the neighboring elements
(whether interior or extreme), until a total number of
iterations is achieved. Notice that the term “time
step” implies an iterative method in which the opera-
tion requires four coeflicients. The algorithm described
takes into consideration an iterative solution of oper-
ations, known as relaxation. The simplest relaxation
method is the Jacobi relaxation, in which the tem-
perature of each and every interior element is simul-
taneously approximated using its local temperature
and the temperatures of its neighbors (and it is the
one presented here). Other relaxation methods include
the Gauss-Seidel relaxation and the successive over-
relaxation (SOR). Iterative methods tend to be more
efficient than direct methods.

RIGHTSE LI MN iy

3.1 Specification of the System

e The scope. This section aims to describe the basic
operation of the parallel software system, considering
the information presented in the Problem Analysis
step about the parallel system and its programming
environment. Based on the problem description and
algorithmic solution presented in the previous section,
the procedure for applying an architectural pattern for
a parallel solution to the Laplace Equation problem is
presented as follows [6, 9]:

(1) Analyze the design problem and obtain its specifi-
cation. Analyzing the problem description and the
algorithmic solution provided, it is noticeable that
the calculation of the Laplace Equation is a step-by-
step, iterative process. Such a process is based on
calculating the next temperature of each element of
the surface through each time step. The calculation
uses as input the temperatures of the four neighbor
elements of the surface, and provides the temperature
at the next time step.

(2) Select the category of parallelism. Observing the form
in which the algorithmic solution partitions the prob-
lem, it is clear that the surface is divided into el-
ements, and computations are executed simultane-
ously by different elements. Hence, the algorithmic

EuroPLoP '18, July 4-8, 2018, Irsee, Germany

solution description implies the category of Domain
Parallelism.

(3) Select the category of the nature of the processing
components. Also, from the algorithmic description of
the solution, it is clear that the temperature of each
element of the surface is obtained using exactly the

J. Ortega-Arjona

the shape of the surface. Identical components simul-
taneously exist and process during the execution
time. An Object Diagram, representing the network
of elements that follows the two-dimensional shape
of the surface and its division into elements, is shown
in Figure 5.

same calculations. Thus, the nature of the processing
components of a probable solution for the Laplace
Equation, using the algorithm proposed, is certainly
a Homogeneous one.

(4) Compare the problem specificalion with the architec-
tural pattern’s Problem section. An Architectural Pat-

:Channel }—‘:Elmn }—‘:Ch nnel }—

tern that directly copes with the categories of domain ‘ = = =
parallelism and the homogeneous nature [6, 8, 9]
of processing components is the Communicating — . _
Sequential Elements (CSE) pattern (7, 9]. In g — Chamel

order to verify that this architectural pattern actu-
ally copes with the Laplace Equation problem, let us
compare the problem description with the Problem
section of the CSE pattern. From the CSE pattern
description, the problem is defined as [7, 9]: ‘ ‘Channel }—{ Llement }—{ ‘Channel Lllement

“A allel ¢ utation is required that can b
paratiet compuration 18 require at can oe

performed as a set of operations on reqular data.
Results cannot be constrained to a one-way flow

Figure 5: Object Diagram of Communicating Se-
quential Elements for the solution to the Laplace

:Channel

‘ :Channel }—‘ :Element }—‘ :Channel }7

:Element :Channel

:Channel

:Element :Channel

:Channel

:Element :Channel

:Channel

:Channel

among processing stages, but each component
executes its operations influenced by data val-

ues from its neighboring components. Because of Equation.
this, components are expected to intermittently
exchange data. Communications between compo- (2) Dynamics. A scenario to describe the basic run-time

nents follow fixed and predictable paths”.

Observing the algorithmic solution for the Laplace
Equation, it can be defined in terms of calculating
the next position of the surface elements as ordered
data. Each element is operated almost autonomously.
The exchange of data or communication should be
between neighboring elements of the surface. So, the
CSE is chosen as an adequate solution for the Laplace
Equation, and the architectural pattern selection is
completed. The design of the parallel software system
should continue, based on the Solution section of the
CSE pattern.

e Structure and dynamics. Based on the information
of the Communicating Sequential Elements architec-
tural pattern, it is used here to describe the solution
to the Laplace Equation in terms of this architectural
pattern’s structure and behavior.

(1) Structure. Using the Communicating Sequential El-
ements architectural pattern for the Laplace Equa-
tion, the same operation is applied simultaneously to
obtain the next position values of each element. How-
ever, this operation depends on the partial results in
its neighboring elements. Hence, the structure of the
actual solution involves a regular, two-dimensional,
logical structure, conceived from the surface of the
original problem. Therefore, the solution is presented
as a two-dimensional network of elements that follows

RIGHTSE LI MN iy

behavior of the Communicating Sequential Elements

pattern for solving the Laplace Equation is shown as

follows. Notice that all the elements, as basic process-
ing software components, are active at the same time.

Every element performs the same position operation,

as a piece of a processing network. However, it is

diffcult to present in a single figure all the interac-
tions carried out for the whole parallel computation.

Thus, for the two-dimensional case here, Figure 6

only shows the interactions between only one ele-

ment object, which communicates with its neighbors
thorugh four dedicated channels.

The processing and communicating scenario is as

follows:

— Initially, consider only a single Element object,
e(i,j). At first, it exchanges its local temperature
value with its neighbors e(i-1,j), e(i+1,j), e(i,j-
1), and e(i,j+1) though the adequate commu-
nication Channel components. After this, e(i,j)
counts with the different positions from its neigh-
bors.

— The position operation is simultaneously started by
the e(i,j) component and all the other components
of the surface.

— In order to continue, all components iterate as
many times as required, exchanging their partial
position values through the available communica-
tion channels.

Applying Architectural Patterns for Parallel Programming

— The process repeats until each component has
finished iterating, and thus, finishing the whole
Laplace Equation computation.

(3) Functional description of components. This section

describes each processing and communicating soft-

ware components as participants of the Communi-

cating Sequential Elements architectural pattern, es-
tablishing its responsibilities, input and output for
solving the Laplace Equation.

— Element. The responsibilities of an element, as
a processing component, are to obtain the next
local temperature from the temperature values it
receives, and make available its own temperature
value so its neighboring components are able to
proceed.

— Channel. The responsibilities of every channel, as
a communication component, are to allow sending
and receiving temperature values, synchronizing
the communication activity between neighboring
sequential elements. Channel components are de-
veloped as the main design objective of a following
step, called “Communication Design”, which is not
addressed in this paper.

(4) Description of the coordination. The Communicating

Sequential Elements pattern describes a coordination
in which multiple Element objects act as concurrent
processing software components, each one applying
the same temperature operation, wherecas Channel
objects act as communication software component
which allow exchanging temperature values between
sequential components. No temperature values are di-
rectly shared among Element objects, but each one
may access only its own private temperature values.
Every Element object communicates by sending its
temperature value from its local space to its neighbor-
ing Element objects, and receiving in exchange their

(5

=

EuroPLoP '18, July 4-8, 2018, Irsee, Germany

temperature values. This communication is normally
asynchronous, considering the exchange of a single
temperature value, in a one to one fashion. Therefore,
the data representing the whole two-dimensional sur-
face represents the regular logical structure in which
data of the problem is arranged. The solution, in
terms of a divided surface, is presented as a network
that actually reflects this logical structure in the

most transparent and natural form [7, 9].

Coordination analysis. The use of the Communicat-

ing Sequential Elements patterns as a base for orga-

nizing the coordination of a parallel software system
for solving the Laplace Equation has the following
advantages and disadvantages:

— Advantages

(a) The order and integrity of temperature results is
granted because each Element object accesses
only its own local temperature value, and no
other data is directly shared among components.

(b) All Element objects have the same structure
and behavior, which normally can be modified
or changed without excessive effort.

(c¢) The solution is easily structured in a transparent
and natural form as a two-dimensional array of
components, reflecting the logical structure of
the two-dimensional surface in the problem.

(d) All Element objects perform the same temper-
ature operation, and thus, granularity is inde-
pendent of functionality, depending only on the
size and number of the elements in which the
two-dimensional surface is divided. Changing
the granularity is normally easy, by just adjust-
ing the number of Element objects in which
the surface is divided, thus obtaining a better
resolution or precision.

(e) The Communication Sequential Elements pat-
tern can be easily mapped into the shared mem-
ory structure of the parallel platform available.

e(i,j):Element ‘:Channel ‘:Channel ‘ :Channel ‘:Channel — Liabilities

(a) The performance of a parallel application for
[femperatie | To element e(i-1.j) solving the Laplace Equation based on the Com-
[temperature | T To element e(i+1,j) municating Sequential Elements pattern is heav-
[temperature | h u_j“‘eme"‘e("-"“ ily impacted by the communication strategy
To element efi,j+1) used. For the present example, the threads avail-
[temperature | From element e(i~1j able in the parallel platform have to take care
[temperature |] From element e(i+1) of a large number of Element objects, so each
[temperaue | | from clement e(i=1) thread has to operate on a subset of the data
emperature [T Tromelemente(i+h rather than on a single value. Due to this, de-
o) p.end?ncies between data, expressed as commu-
nication exchanges, could be a cause of a slow

down in the program execution.

(b) For this example, load balancing is kept by allow-
ing only a fixed number of Element objects per
thread, which tends to be larger than the number
of threads available. Nevertheless, if data would
not be easily divided into same-size subsets, then
the computational intensity varies on different

Figure 6: Sequence Diagram of the Communicating
Sequential Elements for communicating positions
through channel components for the Laplace Equa-
tion.

RIGHTSE LI MN iy

EuroPLoP '18, July 4-8, 2018, Irsee, Germany

processors. Even though every processor is virtu-
ally equal to the others, maintaining the synchro-
nization of the parallel application means that
any thread that slows down should eventually
catch up before the computation can proceed to
the next step. This builds up as the computa-
tions proceeds, and could impacts strongly on
the overall performance.

(c) Using synchronous communications implies a
significant amount of effort required to get a
minimal increment in performance. On the other
hand, if the communications are kept asynchro-
nous, it is more likely that delays would be
avoided. This is taken into consideration in the
next step, “Communication Design” (not de-
scribed here).

4 IMPLEMENTATION

In this section, all the software components described in
the Coordination Design step are considered for their im-
plementation using the Java programming language. Once
programmed, the whole system is evaluated by executing it
on the available hardware platform, measuring and observing
its execution through time, and considering some variations
regarding the granularity.

Here, it is only presented the implementation of the coor-
dination structure, in which the processing components are
introduced, implementing the actual computation that is to
be executed in parallel. Further design work is required for de-
veloping the channel as communication and synchronization
components. Nevertheless, this design and implementation
goes beyond the actual purposes of the present paper.

The distinction between coordination and processing com-
ponents is important, since it means that, with not a great
effort, the coordination structure may be modified to deal
with other problems whose algorithmic and data descriptions
are similar to the Laplace Equation, such as the Poisson
Equation [3].

4.1 Coordination

Considering the existence of a class Channel for defining the
communications between Element objects, the Communi-
cating Sequential Elements architectural pattern is used here
to implement the main Java class of the parallel software
system that solves the Laplace Equation. The class Element
is presented as follows. This class represents the Commu-
nicating Sequential Elements coordination for the Laplace
Equation example.
class Element implements Runnable{
private static int M = 65536, N = 65536, iterations = 10;
private static Channel[][][] element = null;
private int i = -1;
private int j = -1;
public Element(int i, int j){
this.i = i;
this.j = j;
new Thread(this).start();

}
public void run(){

RIGHTSE LI MN iy

J. Ortega-Arjona

double temperature, received, total;
temperature = random(10xM) ;

for (int iter = 0; iter < iteratioms; iter++) {
// Send local temperatures to neighbors

if (i < M-2 & j > 0 & j < N-1) send(element[i+1][j][0],
if (i >1 & j > 0 && j < N-1) send(element[i-1][jI[1],
if (j < N-2 && i > 0 && i < M-1) send(element[i][j+1][2],
if (3 >1 && i > 0 && i < M-1) send(element([i] [j-1][3],
total = 0.0;

// Receive temperature from neighbors
if(i >0 & j >0 & i < M-1&& j < N-1){
for(int x = 0; x < 4; i++){
received = receive(element[i] [j][x]);
total += received;

}
// Insert processing here
}
}
public static void main(String[] args){
segment = new Channel[M] [N} [2];
for(int m = 0; m < M; m++){
for(int n = 0; n < N; n++){
for(int p = 0; p < 4; p++){
element [m] [n] [p] = new Channel();
}
}
}
for(int m = 0; m < M; m++){
for(int n = 0; n < N; n++){
new Element(m,n);
}
}
System.exit(0);
}
}

This class only creates two adjacent, two-dimensional ar-
rays of Channel components and Element components, which
represents the coordination structure of the whole parallel
software system, developed for executing on the available
parallel hardware platform. Channel components are used for
exchanging temperature values between neighboring Element
components, each one first sending its own temperature value
(which is an asynchronous, non-blocking operation), and later
retrieving the temperature values of the four neighboring
surface components. Using this data, now it is possible to
sequentially process to obtain the new temperature of the
present component. This communication-processing activity
repeats as many times as iterations defined.

4.2 Processing components

At this point, all what properly could be considered “parallel
design and implementation” has finished: data is initialized
(here, randomly, but it can be initialized with particular
temperature values) and distributed among a collection of
Element components. It is now the moment to insert the
sequential processing which corresponds to the algorithm
and data description found in the Problem Analysis, This
is done in the class Element, where it is commented Insert
processing here, by simply adding the following code, and
considering the particular declarations for its computation:
temperature = total/4;

The simple, sequential Java code allows that each Element
component obtains a local temperature based on the Laplace

temperature) ;
temperature) ;
temperature) ;
temperature) ;

Applying Architectural Patterns for Parallel Programming EuroPLoP '18, July 4-8, 2018, Irsee, Germany

Equation. Modifying this code implies modifying the process-
ing behavior of the whole parallel software system, so the
class Element can be used for other parallel applications, as
long as they are two-dimensional and execute on a shared
memory parallel computer.

5 SUMMARY

The Architectural Patterns for Parallel Programming are ap-
plied here along with a method in order to show how to apply
an architectural pattern that copes with the requirements of
order of data and algorithm present in the Laplace Equation
problem. The main objective of this paper is to demonstrate,
with a particular example, the detailed design and implemen-
tation that may be guided by a selected architectural pattern.
Moreover, the application of the Architectural Patterns for
Parallel Programming and the method for selecting them
is proposed to be used during the Coordination Design and
Implementation for other similar problems that involve the
calculation of differential equations for a two-dimensional
problem, executing on a shared memory parallel platform.

6 ACKNOWLEDGEMENTS

The author would like to thank Christian Kohls, my shepherd
for EuroPLoP 2018, for his valuable comments, as well as the
attendants to the Writers’ Workshop group, for their greatly
helpful suggestions.

REFERENCES

[1] P. Brinch-Hansen Distributed Processes: A Concurrent Program-
ming Concept., Communications of the ACM, Vol.21, No. 11,
1978.

[2] E.W. Dijkstra Co-operating Sequential Processes, In Program-
ming Languages (ed. Genuys), pp.43-112, Academic Press, 1968.

[3] J. Gazdag and H.H. Wang Concurrent computing by sequential
staging of tasks, In IBM Systems Journal, pp.646-660, IBM Co.,
1989.

[4] S. Hartley Concurrent Programming. The Java Programming
Language., Oxford University Press Inc., 1998.

[5] C.A.R. Hoare Communicating Sequential Processes. ~Communi-
cations of the ACM, Vol.21, No. 8, August 1978.

[6] J.L. Ortega-Arjona and G.R. Roberts Architectural Patterns for

Parallel Programming, Proceedings of the 3rd European Con-

ference on Pattern Languages of Programming and Computing

(EuroPLoP98), Kloster Irsee, Germany, 1998.

J.L. Ortega-Arjona The Communicating Sequential Elements Pat-

tern. An Architectural Pattern for Domain Parallelism, Proceed-

ings of the 7th Conference on Pattern Languages of Programming

(PLoP2000), Allerton Park, Illinois, USA, 2000.

[8] J.L. Ortega-Arjona Architectural Patterns for Parallel Program-
ming: Models for Performance Evaluation, PhD Thesis, Depart-
ment of Computer Science, University College London, UK, 2007.
http://www.sigsoft.org/phdDissertations/theses/Jorgelrtega.pdf

[9] J.L. Ortega-Arjona Patterns for Parallel Software Design, John
Wiley & Sons, 2010.

[10] Sun Microsystems. Sun SPARC Enterprise T5120 Server.
http://www.sun.com/servers/coolthreads/t5120/.

[7

RIGHTSE LI MN iy

