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Abstract: Fault detection and isolation (FDI) has become a useful strategy for determining fault appearance and 
on-line reconfiguration. However, unknown scenarios during on-line performance are still an open field for 
research. Different methods, such as knowledge-based techniques or analytical redundancy, have been followed. 
Nevertheless, both methods present inherent drawbacks for isolation. The present paper introduces a combined 
approach of model- and knowledge-based methods, using an autonomous element for isolation of unknown 
scenarios during on-line stage. The contribution is to integrate both methods in order to accomplish fault 
localization for unknown scenarios, based on previous information. Faults are constrained to certain bounded 
frequency response. 
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1. Introduction 
 
The task of fault diagnosis consists of determining the type, size and location of the fault as well as its time of 
detection. The use of knowledge-based techniques for fault localization and diagnosis allows on-line recognition 
of abnormal scenarios. These are based upon data treatment (Nelles, 2001), albeit these techniques require large 
amounts of data in order to obtain a valid representation of different scenarios. Alternatively, analytical 
redundancy allows a highly accurate detection of faults, based on a model of the observed system. It presents 
very well established methodologies, such as unknown input observers (Chen et al., 1999). Nevertheless, 
analytical redundancy requires a very accurate model of the system in order to locate a fault.  Both, knowledge-
based techniques and analytical redundancy, allow localization and classification of unknown scenarios as 
abnormal situations. The advantages of both methods depend on the type of information obtained, such as 
heuristic knowledge or model-based implementation. However, for abnormal situations, they have the 
disadvantage of not providing accurate results. In general, both methods require two important features: (a) the 
capability to determine faults, and (b) its sources of information. 
Several different approaches attempt to combine knowledge-based techniques and analytical redundancy. 
Polycarpou et al., (1995) propose the use of Radial Based Functions, which converge into certain kind of 
dynamical system, based on a non-linear estimation from a case study. Chiang et al., (2001) present a complete 
review of fault diagnosis, focusing on the use of Principal Component Analysis (PCA) as a dimensionality 
reduction technique. Venkatasubramanian et al., (2003a,b,c) present an extended overview of fault localization 
and diagnosis based on model- and knowledge-based techniques. In general, the combination of both methods is 
feasible, although presenting undesirable glitches when used simultaneously, as discussed by Liling et al., 
(2002). 
An autonomous element is a device that is able to communicate, self-diagnose, and make decisions. The main 
goal of this device is to obtain as much information as possible in order to produce self-calibration and 
compensation. By monitoring autonomous elements of a system, several approaches can be followed for fault 
detection, identification and localization. Several authors, like Isermann (1994), Masten (1997) and  Henry et al., 
(1993), define typical autonomous elements. Moreover, the use of local control within autonomous elements is 
expected to attenuate the effects of disturbances and non-linearities inherent to local model. Lee et al., (2000) 



propose the use of parameter estimation in order to self-tune a PID control where the response of the self-tuning 
procedure is restricted to a fairly linear model in order to response on time. Other approaches, like Wang et al., 
(2002) present a strategy based on robust control, which is feasible for highly non-linear models, although 
having a drawback of computational cost.  
The objective of this work is to define a different approach to combine knowledge-based methods and analytical 
redundancy for on-line classification, using non-supervised neural networks and a bank of unknown input 
observers (UIO’s) for self-diagnosis of autonomous elements. The novelty of this approach is the classification 
of non-well defined fault scenarios during on-line performance of an autonomous element. In order to locate 
unknown scenarios, input and output data is periodically sampled from the autonomous element, using a bank of 
unknown input observers, which generate residual data. Two neural networks are used to process data, input 
output and residual, in order to determine the autonomous element’s behaviour. As this is inherently time 
varying, the signature of its faults may also change over time. Hence, one neural network is proposed to cope 
with changes in the signature of autonomous element’s faults, within certain boundary restrictions. The other 
neural network is used to classify autonomous element’s behaviour, according with a number of defined 
scenarios. Nevertheless, for detecting time varying faults, sampling time plays a key issue.  
 
The paper is organized as follows: Section 2 describes the actual proposed approach for fault localization for an 
autonomous element, based on the integration of neural networks and unknown input observers. Section 3 
presents a case study for testing the approach. Section 4 presents some of the most valuable results, as well as the 
correspondent analysis. Finally, Section 5 presents the concluding remarks. 
 

2. Fault Localization for an Autonomous Element 
 

2.1 General Description of the Approach 
 

The actual approach proposes an integration of two neural networks and a bank of unknown input observers for 
fault localization, as presented in Fig. 3.1. A non-supervised neural network samples the data from an element, 
processing it in order to obtain a pattern. Then, a second non-supervised neural network, using the winning 
weight vector (related to the winning pattern) classifies any abnormal situation.  
 

SOM
Netwok

ART2
Network

Output Sampled Data
Vector

Current
selected
Pattern

Current
Selected
 Cluster

Unsupervised
Network

Static
Classifier

Input Sampled Data Vector

Element

Data from Analytical
 Redundancy

Approach
(Bank of Unknown
Input Observers)

Fuzzy
Evaluation

Module
Normalization

Procedure

 
Fig. 2.1 Process diagram for Fault Localization 
 
The idea of using two consecutive neural networks is to avoid miss-classification during the presence of 
unknown scenarios, using a self-organizing map (SOM) and adaptive resonance theory algorithms. SOM 
categorizes the behaviour of the monitored element. Then, the results are evaluated by a second neural network 
(an ART2A) in order to avoid glitches between similar categories. 
The data is divided into three types: input, output and residual data, this last one obtained from analytical 
redundancy. Data is used in two stages: an off-line stage in order to train both neural networks, and an on-line 
stage for testing this approach. During the first stage, a training matrix is build. Such a training matrix consists of 



three types of variables input, output and residual data, normalized between 0 and 1. In terms of scenarios, this 
matrix is divided into three areas as presented in Fig. 2.2. Each type of variable has M samples, organized as 
rows. The whole bunch of variables are integrated by three scenarios, organized as columns. 
 

 
Fig. 2.2 Input Training Matrix 
 
During training stage, each sample time window is composed of M samples directly related to a time window 
(∆t). The frequency of the fault has a bottom boundary, shown in eqn. 2.1.  

t
frq fault ∆

≥ 4
       (2.1) 

where frqfault is the frequency of the monitored fault, and ∆t is the sampled time window. 
 
Experimentally, a quarter of ∆t has been chosen as the bottom boundary since this frequency is fast enough to 
distinguish sampled fault information between patterns. Therefore the frequency of the fault can be larger than 
this quarter of ∆t. Alternatively, the top limit in terms of fault sampling is unlimited, although, the approach 
proposed here would be useless to classify a fault much faster than a ∆t sampling window. At the time that this 
fault localization approach produces a result, it is highly possible that the current fault can be in another stage. 
This top bound is still open for further research and, in principle, is based on the relation between the frequency 
of case study and the ∆t time window. Thus during on-line stage, sampling time is reduced to one sample 
evaluated every time as depicted in Fig. 2.3. 
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Fig. 2.3 Sampling time during on-line stage 
 
Both neural networks are trained in cascade as shown in Fig. 2.1. Each has its own weight matrix, which are 
initialized randomly.  
For UIO design, formal knowledge of the element behaviour during fault scenarios is crucial, since these 
scenarios are defined in terms of element response during the presence of certain unknown input. Hence, it is 
necessary to have access to several sources of information from the monitored element. Notice that any fault 
localization approach relays on the dynamic characteristics of the monitored element.  
 
2.2 Integration of Non-supervised Neural Networks 
 



Non-supervised Neural Networks are able to implement cluster algorithms. The main idea behind any cluster 
algorithm is to define centers as points within a data space. Centers serve as focal points for initial data 
representation. They are used for classifying non-linear behavior within non-supervised neural networks, such as 
SOM and ART2A. These networks present a fast response for non-linear and abnormal scenarios, although there 
is no guarantee for glitch presence in case of transitions. Therefore, the integration following a sequential mode 
allows the elimination of non-desirable transitions between scenarios due to “cluster” classification performed 
by SOM and pattern integration performed by ART2A. 
There are various methodologies to build clusters (Abe, 2001). Proposals such as an entropy-based fuzzy 
clustering method defines cluster based on the entropy of each point with respect to a center (Höpnner et al., 
1999). In the case of SOM and ART2A, these have the peculiarity to classify unknown scenarios in a predictable 
behavior (Fig. 2.4). In fact, the defined clusters are the representation of several scenarios (ART2-A results) 
whereas those classified patterns (SOM classified patterns) are the representation of the local behaviour of the 
element. The integration of UIO, SOM and ART2-A allows several advantages, such as availability of measured 
states and the capability to classify abnormal situation, avoiding undesired glitches during on-line performance.  

 
Fig. 2.4 The Method in terms of Patterns 
 
During the off-line stage, SOM is trained using fault and fault-free scenarios with certain frequency, using 
different parameters, which are tuned in order to produce a valid and unique response. An important assumption, 
which impacts on the structure of SOM, is the use of a rectangular grid for data classification. This has been 
chosen due to its regularity when comparing between patterns, even in case of unknown faults. The regular grid 
allows a distribution of winner patterns. However, when a scenario is classified between the winner pattern and 
other devious patterns, miss-classification is present. This sort of case is defined as “glitch”, and it is related as a 
transition from one scenario to another. There are various ways to avoid this behaviour like a better training 
procedure, or defining winner patterns during transitions. However, glitches are not completely and certainly 
classified by SOM. Hence, glitches are classified using an ART2A. This network is trained to identify the 
response of SOM during the evaluation of one scenario with one particular pattern. This means that one 
particular pattern (from ART2A network) represents those patterns from SOM related to the same scenario. Fig. 
2.5 gives a graphical representation of the procedure. 
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Fig 2.5 Pattern classification using SOM and ART2A 
 
The objective of this cascade is to eliminate miss-classification of time variant faults and transitions between 
fault-free scenarios. This approach relays on certain boundary with respect to the similitude between patterns 
from SOM and those from ART2A. 
 



2.3 The Fuzzy Evaluation Module 
 
After defining the use of two neural networks as an approach to classify unknown scenarios, a heuristic measure 
is required as a final step to determine how a particular scenario has been degraded. This measure, known as 
confidence value, is generated by a fuzzy logic module. This module evaluates the winning weight vector related 
to the classified pattern from ART2A, in order to produce a percentage representation of current behaviour.  
The confidence value classifies the behaviour of peripheral element under the presence of a fault. It shows the 
degradation of the element with respect to the output, input and residuals. The procedure by which the fuzzy 
logic acquires knowledge is a key issue. Different methodologies can be followed. The confidence value has a 
continuous range from zero (catastrophic situation) to one (fault-free scenario) (Fig. 2.6). 
 

 
Fig. 2.6 Confidence Value Representation 
 
2.4 Evaluation of the Approach 
 
The evaluation of this approach is carried out using two scenarios: the first scenario is composed of four similar 
signals with different frequencies (Fig. 2.7). 
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Fig. 2.7 First scenario used to evaluate the approach (a section of first 100 seconds) 
 
These four signals have different frequencies: 0.005 Hz (continuous line), 0.01 Hz (dotted line), 0.06 Hz (dash-
dotted line), and 0.1 Hz (dashed line). This scenario has a time window of 1000 seconds. The evaluation of 
SOM+ART2A approach is performed every sample during this time window. First, a learning stage is 
accomplished by training both neural networks, using this scenario during 100 seconds (Fig. 2.7). During this 
learning stage, the parameters η and ρ are 0.02 and 0.021, respectively. These two parameters, η and ρ, 
correspond to SOM and ART2A networks respectively. During the next stage (classification stage) the 



SOM+ART2A approach is tested using the rest of the time window. In this case, the parameters η and ρ are 
changed, resulting in different numbers of patterns for the same evaluated scenario. 
In the classification stage, these patterns are considered as fail patterns (as extra patterns) because SOM and 
ART2A have failed to classify them as similar to the originally recognized patterns, as shown in Table 2.1. 
 

 SOM ART2A 
η 

(Parameter related to 
SOM) 

ρ 
(Parameter related to 

ART2A) 

New 
Patterns 

Number of Fail 
Patterns 

New 
Patterns 

Number of Fail 
Patterns 

0.011 0.011 424 - 135 - 
0.015 0.015 424 - 135 - 
0.02 0.02 432 - 135 - 
0.07 0.07 450 378 135 369 
0.1 0.1 480 477 140 463 

0.12 0.12 463 480 142 463 
0.15 0.15 450 378 140 380 
0.18 0.18 455 380 141 385 

Table 2.1 Evaluation using the First Scenario 
 
These results suggest that the increment on both parameters permit the increment of fail patterns. However, the 
number of patterns from both neural networks does not suffer a substantial increase. The meaning of this failure 
is that some patterns are miss-classified within different scenarios.  
In the second scenario, the approach is evaluated keeping both weight matrices. In this case, signals are 
conformed by the element’s response during different situations, such as transitions from different operating 
points. The case study, presented in Section 4, is used to generate these signals. Fig. 2.8 shows the initial 1000 
seconds of the second scenario. The continuous line is referred to the output temperature, the dashed-dotted line 
is the response of pressure, and the dotted line is the residuals. 
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Fig. 2.8 Second scenario used to evaluate the approach 
 
The response of this evaluation is shown in Table 2.2. During this scenario the number of new patterns is 
increased by SOM. Nevertheless, this behaviour is not presented in ART2A. Thus, this result confirms one of the 
goals of this paper, which is defining a strategy capable to cope with unknown scenarios without further 
appearance of new patterns. However, the number of fails patterns considerably increases. 
 



 SOM ART2A 
Number 

of 
Scenarios 

η 
(Parameter related to 

SOM) 

ρ 
(Parameter related 

to ART2A) 

New 
Patterns 

Number of 
Fail Patterns 

New 
Patterns 

Number of Fail 
Patterns 

1 0.011 0.011 457 - 135 - 
2 0.015 0.014 465 451 135 462 
3 0.02 0.02 465 451 135 462 
4 0.07 0.07 617 472 135 479 
5 0.1 0.1 658 470 139 483 
6 0.12 0.12 658 470 139 483 
7 0.15 0.15 618 472 138 479 

Table 2.2 Evaluation using the Second Scenario 
 
For this scenario, the best η and ρ for unknown scenarios are 0.015 and 0.014 respectively. In order to confirm 
this result, a validation measure (Kiviluoto, 1995 & Lopez-García, et al., 2004) has been performed, obtaining a 
topographic error calculated as follows (eqn. 2.2).  

( )∑
=

=
N

k
kt xu

N
e

1

1
      (2.2) 

where N is the number of samples, xk is the kth sample of the data set, and u(xk) is 1 if the first and second best 
matching patterns are not adjacent units, otherwise zero. The error is evaluated with respect to classified patterns 
from SOM. This error shows how separate are classified patterns between each other (Fig. 2.9). Every scenario 
presented has a very low error performance, such as scenarios 6 and 7, where error is neglected. However, the 
number of patterns during these scenarios considerably increases. This is an undesirable response for on-line 
performance, due to the increase of time consumption during the classification stage. Alternatively, second 
scenario has the largest error, but the number of patterns has not presented the previously referred increase. The 
conditions presented in second scenario for η and ρ are preferable for classification stage, rather than any other 
respective value. 
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Fig. 2.9 Error Measure Performance with respect to η and ρ numbers  
 
3. Case-Study  
 
In order to validate the present fault localization approach, this section introduces an example related to a basic 
implementation of the autonomous element (Fig. 3.1). This case study is based on a pressure sensor composed of 
three similar transducers, which have been linearised to a nominal value. The dynamic model is presented in eqn. 
3.1. It consists of a bank of UIO’s, an Intelligent Fault Localization Module, a local control law, and a Fuzzy 
Evaluation Module. 
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Fig. 3.1 Pressure Sensor divided in Three Modules 
 
The input vector is composed of data from pressure demand and temperature. The output signal presents the 
delivery pressure. Based upon these available measures, the feedback relation is proposed in order to attenuate 
some disturbances. The proposed control is based upon the PI architecture (Lee et al., 2000). The dynamics of 
spare transducers are not modeled. Two additive faults are considered. Both injected faults are related to a 
backlash, variable time delays, and a dead zone (Table 3.1). 
 
Fault I Backlash=0.01, Dead Zone= (-0.01, 0.01), Time 

Delay = 0.001 
Fault II Backlash=0.09, Dead zone= (-0.051, 0.032), Time 

Delay = 0.012 
Table 3.1 Fault Scenarios  
 
The presence of the faults is established in two injection points at the output of case study. These are present 
during specific times in order to demonstrate the proposed approach. Hence, it is necessary to implement two 
UIO’s, sensible to each fault. Both observers conform their matrices as follows (Eqn 3.2). 
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Each observer responds to a particular fault. Furthermore, fault scenarios not considered for both observers are 
classified as different patterns by the fault localization module. In the case of glitches and transitions, SOM 
classifies this behaviour as “weak” patterns, meaning patterns that belong to a certain cluster in a distance 
manner. If this behaviour keeps its presence, a new cluster is declared. Current values of local PID control law 
are k1=0.91, k2=0.05 with respect to following equation (3.3). 
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where e corresponds to current error, and pid current control output. 
The characteristics for both neural networks are selected as shown in Table 3.2. Specifically, the sampling 
window is equal to 100 samples. Therefore detectable fault have a minimum frequency equal to 100 Hz. 
 

Size of Sampling data (M 
samples) 

100 samples 

Size of Initial Output vector  4 data 
Input Vector 4 data 
Initial Population of Neurons 76 neurons 

SOM 

Learning Value 0.015 
Input Vector 4 data 
Size of Initial Output vector 4 data 
Initial Number of Neurons 100 
Vigilance Parameters 0.014 

ART2A 

Learning value 0.02 
Table 3.2 Technical Characteristics of Neural Networks 
 

4. Results and Analysis 
 
This section presents the results related to fault and fault-free scenarios. Three different scenarios are considered, 
two known scenarios (Fault and Fault-Free) and one unknown scenario (Unknown Fault). For the fault-free 
scenario both neural networks and UIO have been already trained and designed. The element response is 
presented in Table 4.1, where time delay gives an approximation of how long it takes to obtain a trustable 
response. 

Name of Scenario Number of Selected Patterns 
from ART2A (New Patterns) 

Response Time 
Delay 

Known Fault-Free Scenario 5 Immediate Response 
Table 4.1 Fault Free Scenario 
 
For the case of second known scenario, where a fault is present, the selected patterns and time delay response are 
shown in Table 4.2 

Name of Scenario Number of Selected Patterns 
from ART2A (New Patterns) 

Response Time 
Delay 

Known Fault Scenario 7 100 seconds 
Table 4.2 Known Fault Scenario 
 
Alternatively, an unknown scenario is used for fault localization procedure. This scenario consists of saturation 
at the output of case study. Therefore it is expected an increment in the number of patterns and time delay. Table 
4.3 shows this behaviour, taking into account starting time and detection time. 

Name of Scenario Number of Selected Patterns 
from ART2A (New Patterns) 

Response Time 
Delay 

Unknown Fault Scenario 60 200 seconds 
Table 4.3 Unknown Fault Scenario 
 
The graphical representations of these results are presented in Fig. 4.1 for fault-free scenario. Four different 
graphs are shown: current input, its respective output, the injected fault according to the decision making 
module, and the number of patterns selected as result of this evaluation. This fault-free scenario has a time 
variance of sin(0.5*t). This time variance behaviour is depicted as current output of case study. The selected 



patterns are presented in a consecutive manner with respect to the horizontal axis. Although, the number of 
patterns increased to 70 (vertical axis), those selected are no more than 10. The first 20 patterns have been 
selected as part of the setting of both neural networks. From the final 50 patterns, two are predominant. These 
are pattern number 70 and pattern number 45. Both patterns are the representation of this fault-free scenario with 
a limited time variance. The number of patterns is related with the final position within the weight matrix from 
ART2A. An important issue with respect to the number of patterns is the very low number of fail patterns. 

 
Fig. 4.1 Fault-Free Scenario with Time Variance Behaviour 
 
In the case of a fault scenario (Fig. 4.2), the response of the element presents a small perturbation due to an 
increment of time delay (Table 3.1, Fault II). The number of patterns increases to 25. There is no predominant 
pattern during this test. However, some patterns have been already selected during fault-free scenario. 
 

 
Fig. 4.2 Fault Scenario without Residual Evaluation 
 
The fault scenario takes into account a time variance of 0.12s as well as confidence value responses (Fig. 4.3). In 
this case, the fault is a time delay at the output of case study. This fault modifies the residual value at the output 
of UIO, therefore the behaviour of selected patterns is modified. This results in a decrement of the confidence 
value, keeping a response of 82% during fault free scenarios, and a response of 19% and 41% during fault 
scenario. 



 
Fig. 4.3 Fault and Fault-Free Scenarios with Residual Evaluation and Time Invariant Behaviour 
 
In the fault-free scenario (Fig. 4.4), several types of patterns are classified. However, confidence value keeps a 
regular result, around 80%. In this case, 100% trust has not been achieved due to inherent time variant. As 
expected, residual value remains null during this scenario. Although, element response has not been accurately 
controlled by the local control law. 
 

 
Fig. 4.4 Fault-Free Scenario with Time Variance Input Behaviour with Residual Evaluation 
 

5. Conclusions 
 
The combination of neural networks and analytical redundancy enhances the capabilities for fault localization. 
The key issue here is how data tends to be processed by the neural networks, in order to classify patterns. The 
integration of two neural networks in cascade allows the classification of time variant behaviour even during 
fault presence. This is possible due to an ART2A is used to determine the boundary between clusters from SOM 
output. 
An important restriction of this approach is the sampling time window. This is inherent to the sampling 
technique. It is necessary to define a lower bound in terms of the number of samples, which is stated here as M. 
This value has a direct effect over ∆t and frqfault. However, in terms of sampling, there is no restriction regarding 
an upper bound. Its only practical restriction has to do with the response time. In such a case, faults that occur 



faster than this fault localization approach give a useless classification. Moreover, there is another clear 
restriction regarding to the possible explosion of the number of patterns. 
The use of a bank of observers presents a formal approach in order to determine an isolated fault. This allows the 
isolation of fault-free and fault-specific scenarios, with very low time consumption for on-line performance. 
However, when an unknown scenario appears, it cannot declare a specific performance. Thus, neural networks 
represent an advantage as geometric classifiers. The integration of both, bank of observers and non-supervised 
neural networks, enhances the classification of abnormal scenarios such as unknown faults even with time 
variation. 
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