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Abstract 
There are many possibilities to design a parallel program in order to obtain the best performance possible. The 
selection of a program structure, as an organisation of processes, impacts on the performance to be achieved, and 
depends on the problem to be solved. Now, in order to select a program structure as the best in terms of performance, 
the software designer requires performance modelling techniques to evaluate different alternatives. If the structure of 
the parallel program can be modelled as a set of interacting processes, described in terms of UML State Diagrams, 
this paper presents a performance modelling  to estimate the average execution time of a parallel program. 
Performance modelling is achieved by calculating the average execution time of a parallel program, described as a 
set of processes which run with deterministically and exponentially distributed execution times. 
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Resumen 
Hay muchas posibilidades para diseñar un programa paralelo a fin de obtener el mejor desempeño posible. La 
selección de una estructura del programa, así como una organización de procesos, impacta sobre el desempeño a 
lograrse, y depende del problema a resolver. Ahora bien, para seleccionar una estructura del programa como la mejor 
en términos de desempeño, el diseñador de software requiere de técnicas de modelación para evaluar diferentes 
opciones. Si la estructura de un programa paralelo puede modelarse como un conjunto de procesos interactivos, 
descritos en términos de Diagramas de Estado de UML, este artículo presenta una modelación para estimar el tiempo 
de ejecución promedio de un programa paralelo, descrito como un conjunto de procesos que corren en tiempos de 
ejecución con distribuiciones determinística y exponencial. 
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1. Introduction 
 
During the last few years, parallel computing has been proposed as a potential solution for the increasingly complex 
problems in several research and development areas like quantum chemistry, fluid mechanics, weather forecasting, and 
others. Designing and programming parallel programs requires an extraordinary effort of the software designer, who has to 
balance between the complexity of the parallel implementation and the performance expectations. At the initial stage of 
parallel software development, the software designer counts only with the information of the problem to solve, the available 
parallel hardware platform, and the programming language to use. Based solely on this information and on the software 
designer experience, a parallel program is commonly designed and implemented. But, as parallel programming represents a 
high cost in terms of development effort and time, it would be an advantage to count with quantifiable information before 
further steps are taken during design and implementation. Hence, the software designer could be able to select a program 
structure or another, regarding the parallelism contained in the problem at hand. In general, a software designer does not 
know in advance which of the various parallel structures, described as a set of interacting processes, would have the desired 
execution time on a given parallel platform. Thus, the software designer faces two alternatives: 
 



1. The software designer can implement the various parallel structures. The parallel hardware platform is available, so the 
implementations are possible. Nevertheless, this approach requires a lot of effort and time to test every possible 
solution, and therefore, it tends to be very expensive in terms of both, time and effort. 

2. Instead, the software designer can model the various parallel structures, and try to find the best one by evaluating the 
models, using performance simulation models. 

 
This paper presents an approach, based on the second alternative, to obtaining an average runtime of a parallel program. 
The basic assumption is that the whole parallel program consists of processes whose states are combined to obtain an 
overall state of the parallel program. The runtimes of the states are modelled by a random variable and its distribution 
function. Moreover, the model is based on the dependency between the states of the processes. This is described using 
UML State Diagrams (Booch, et al., 1998; Fowler & Scott, 1997). Figure 1 shows the UML State Diagram of a simple 
parallel program consisting of two processes, A and B. Process A has two states a1 and a2, whereas process B has two states 
b1 and b2. The diagram indicates that processes A and B execute simultaneously in states a1 and b1. Process A can get to 
state a2 only after finishing state a1. However, process B can only get to state b2 when both processes A and B have 
respectively finished states a1 and b1. 
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Figure 1: UML State Diagram of  a simple parallel program. 

 
The analysis of this kind of diagrams tends to be very complex when increasing the number of parallel processes and their 
states. However, if it could be found an equivalent state diagram which considers the states of the parallel program as a 
single entity based on the various possible state combinations of its processes, and also, it could be measured the runtime 
distributions of all processes during such states, then it would be possible to compute the distribution of the overall parallel 
program runtime. Moreover, in order to obtain more realistic models, it is necessary to model the behaviour within a state 
using distribution functions that approximate to measured empirical distribution functions. 
 
The objective of this paper is to present an analysis method which can be applied to compute the distribution of the overall 
parallel program runtime based on an equivalent state diagram of the parallel program and measured data about the runtime 
distributions of the parallel processes. Section 2 presents some related work in the areas of Reliability Engineering,  
Performance Engineering, and Parallel Programming. Section 3 explains how to compute the average runtime of a program 
which consists of processes with exponentially distributed runtime variables (Kleinrock, 1975). Section 4 presents the 
analysis method that allows to approximate the overall parallel program runtime by modelling the processes’ runtimes 
using exponentially and deterministically distributed random variables. Finally, Section 5 presents the execution of 
simulation models that solve the Heat Equation problem, as a case study to validate the method.  
 
2. Related Work 
 
Several other similar approaches have been developed for modelling the performance and reliability of software systems, 
whether these make use of reduction of state diagrams for Reliability Engineering (Billington & Allan, 1992), make use of 
UML diagrams for Performance Engineering (Pooley & King, 1999), or are used for basic parallel programming (Lui et al., 
1998). 
 
Billington and Allan (1992) make use of space state diagrams and network modelling techniques for evaluating the 
reliability of a system, a model and/or a component. Mostly, these diagrams are used to represent failure-repair processes. 
The essence is to derive a set of equations suitable for series-parallel systems: (a) in series system, all components must 
operate for system success, and (b) for a parallel system, one component need to work for system success. So, these 



equations are used to deduce the probability of the system to be in down state or up state, by reducing the different 
probabilities of residing in each of the system states, deriving the approximate state probabilities for each model in a series-
parallel system. 
 
In a similar way, here we make use of UML state diagrams as space state diagrams for depicting the parallel components’ 
states. However, the way in which the state probabilities are reduced is different: states are not reduced using equations of 
the series or parallel probability of residence of each component in each state, but the state of the system is globally 
considered by considering the precedence of states, and hence, the system state is modelled as a single entity, obtaining an 
equivalent UML diagram which takes into consideration only precedence of states to model the system’s performance. 
 
Pooley and King (1999) present a thorough revision of UML, and its potential to be used in Performance Engineering. They 
provide a brief but description of each UML diagram as a potential modelling tool for performance. Nevertheless, they only 
shallowly describe how to exploit use case diagrams, implementation diagrams, sequence diagrams, collaboration diagrams, 
activity diagrams, and state diagrams. They complement these UML diagrams with queuing models in order to derive 
performance models. Unfortunately, they do not deeper into further describing any of the UML diagrams for modelling 
performance. In the particular case of UML state diagrams, they ultimately mention that this approach “requires a lot of 
work”, providing no further information about it. 
 
In the present paper, we exclusively focus on UML state diagrams to reduce the states of a parallel system, obtaining an 
equivalent state diagram, which is actually used for performance modelling. In fact, the treatment given here goes beyond 
simply considering the state of the parallel components, deeper into an analysis of the states within the diagram and their 
reduction into a single equivalent UML diagram. The equivalent states of this UML diagram are modelled by 
deterministically and exponentially distributed variables. 
 
Lui et al. (1998) perhaps provide the closest approach to the one presented here. They also make use of space state 
diagrams and series-parallel reduction, as well as exponentially distributed variables, for deriving performance models for 
simple fork-join parallel programs executing on a multiprocessor environment. Nevertheless, they do not take into 
consideration another or more realistic parallel program structure. Fork-join programs are common, but they tend to neglect 
the communication between parallel components. Hence, these programs do not cover other different types of parallel 
systems, such as Communicating Sequential Elements (Ortega-Arjona, 2000), which highly depends on the communication 
between parallel components. 
 
In this paper, UML state diagrams are derived directly by the precedence relations of the parallel program structure. Thus, 
such state diagrams reflect the behaviour of the parallel program depending on both, computation (within components) and 
communication (which affects the precedence of computations). So, depending on the organization of parallel components, 
different state diagrams are obtained. These diagrams are reduced regarding the precedence of states into a simpler model 
of computation, which is actually used for performance modelling by taking into consideration variations of the time 
consumed by the states of the parallel program as a whole. The following sections explain how execution times are 
modelled using deterministically and exponentially distributed variables.  
  
3. Using Exponentially Distributed Variables for Modelling Execution Times 
 
In order to analyse a state diagram with only exponentially distributed runtimes, it can be used the state space method 
(Thomasian & Bay, 1986). In this method, every state  of the state space is characterised by the set of processes 

 of the parallel program which execute simultaneously in state s . The runtime 
s
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Figure 2: UML State Diagram of a stage of the equivalent state diagram as part of the state space. 

 
Considering the example in Figure 1, the UML State Diagram for the equivalent state diagram is shown in Figure 3. 
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Figure 3: Equivalent UML State Diagram of the state space for the example in Figure 1. 

 
In order to calculate the average runtime of the whole parallel program, it is required to define the average service time in 
state  and the probability of s iP   being the first process which changes state in . Therefore, the average runtime of the 

whole parallel program ( ) can be recursively calculated using the following expression: 
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where: 
)]([ sPE i  is the average service time of process iP  in state  under the condition that s iP  is the first process to 

change state; 
))((p sPi  is the probability that iP  is the first process to change state in ; and s

S is the first state of the whole parallel program in the state space. 
 



As the exponential distribution has the memoryless property (Kleinrock, 1975), the behaviour of the parallel program in 
state  is independent of its history. Using this property, it is obtained for  that: s ))((p sPi
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It is noticeable that  is equal to the first moment of the distribution of the minimum , and it is 

independent of the process which change state first. Only the branching probabilities  depends on i . 
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4. Using Deterministically and Exponentially Distributed Variables for Modelling Execution Times 
 
Modelling the runtime of a process in a particular state using only a simple exponentially distribution is not a very realistic 
approach for the process’ real behaviour. Hence, the use of other arbitrary distribution functions are proposed here as part 
of the models, and thus, it could be possible to analyse the models by the phase method. Moreover, the use of phase type 
distributions, like the Erlang distribution (Kleinrock, 1975), may simplify the analysis. 
 
In general, there are parallel programs with processes whose states have runtime distributions with a small variance. Here, it 
is proposed the use of Erlang-k distributions  (Kleinrock, 1975), which requires a high number of phases ( k ) for its 
computation. Nevertheless, models that use Erlang-k distributions tend to become intractable because of the so-called state 
space explosion (Thomasian & Bay, 1986). To avoid this problem, the number of phases must be reduced and finite. This 
can be done by approximating the -distribution (with its first moment 

kE

kE E and variance V ) by a state with a 

deterministic phase with parameter and an exponential phase with parameter d λ  (Kleinrock, 1975). Therefore, the 
number of phases of one node is reduced from  to two (Figure 4). k
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Figure 4: Approximation of a state with Ek distributed runtime with two states with deterministically distributed runtime d and a state 
with exponentially distributed runtime E. 

 
Approximating the runtime of the state of a process by a deterministic and an exponential phase implies that the modelled 
runtime always has the minimum of time . This is a better model of the real behaviour than a simple exponential 

distribution function with a positive probability for all positive runtimes. Notice that for 

d
V1=λ and VEd −= , 

the first two moments of the -distribution and of the approximate distribution are the same. Moreover, a better 

approximation can be achieved by approximating with a deterministic distribution and an -distribution with parameters 
kE

2E
V2=λ and VEd 2−= . The second exponential phase causes a slower increase of the distribution function at 

time . Thus, as the exponential phase increases, it tend to be close and closer to the original -distribution.  d kE
 
Now, it is required to approximately analyse a state diagram consisting of states which model their runtime by 
deterministically and/or exponentially distributed random variables. Nevertheless, notice that the memoryless property of 
the exponentially distributed random variables is lost, since when introducing deterministically distributed variables, the 
state space method only allows an approximation to the exact value. Therefore, because the deterministically distributed 
variables do not accomplish the memoryless property, the behaviour in a particular state depends on all previous states, and 
since there are deterministically distributed phases running in , they have been running from the start. Considering these 
dependencies, the modelling complexity increases to a point already untractable for small examples. 

s

 
Hence, it is now required to approximately obtain the time in which the parallel program remains in state , considering 

the use of the approximation above. Let 
is'
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simultaneously execute in state  of the parallel program. Let us consider that the phases of a state of the process 
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the minimum of the deterministic phases and  the process have the shortest deterministic runtime in state . Therefore, 
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It is noticeable that, for , the random variable  is approximated by a deterministically distributed variable with 

parameter . To obtain the branching probability and the expected remaining time in any state, let us make use of the 

Dirac function 

kj ≤ jt'

jd '
)(tδ  (Kleinrock, 1975): 
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Using this function and the previous definitions, three cases can be distinguished: 
 

1. . This means considering all deterministic phases except the shortest, and hence: miki ≠∧≤≤1
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2. . This means considering the shortest deterministic phase, and thus: mi =
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3. . This means considering the exponentially distributed phases, so: nik ≤<
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5. Case Study – The Heat Equation Problem 
 
The Heat Equation problem is to calculate the heat diffusion through a substrate, using a parallel program (Ortega-Arjona, 
2000). Let us consider the simplest case, in which the Heat Equation is used to model the heat distribution on a one-
dimensional body, a thin substrate, such as a wire. Different intervals expose a different temperature, determining a 
particular distribution at different times. The heat diffusion is obtained as data representing the way in which the 
temperature of each interval varies through time, tending to increase or decrease depending on the exchange of heat with 
other intervals. 
 
A simple method developed for deriving a numerical solution to the Heat Equation is the method of finite differences (Geist 
et al., 1994; Ortega-Arjona, 2000). Consider the discrete form for the one-dimensional heat equation: 
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where i represents time steps and j indicates wire subintervals. The numerical solution is now computed simply by 
calculating the value for each interval at a given time frame, considering the temperature from both its previous and its next 
intervals (Ortega-Arjona, 2000). 
 
Figure 5 shows a description of the Manager-Workers pattern (Ortega-Arjona, 2004) and the Communicating Sequential 
Elements pattern (Ortega-Arjona, 2000) as two Architectural Patterns for Parallel Programming (Ortega-Arjona & Roberts, 
1998) whose runtimes are compared when solving a particular problem. These two architectural patterns are used to obtain 
two different solutions for the Heat Equation problem, represented as the equation above, on a cluster of 16 computers 
(Geist et al., 1994). Notice that the UML State Diagram for each architectural pattern represents the data dependencies that 
such a pattern describes. For example, the data dependencies of the Communicating Sequential Elements pattern constrain 
that a process on stage i  must wait until its own predecessor and the predecessor of its left and its right neighbour have 
changed state on stage . On the other hand, the Manager-Workers pattern proposes that every process on stage 1−i 1−i  
must finish computing before changing state to level i . Notice that for the Manager-Workers pattern, the states marked 
with are synchronisation states, which are considered to cause no delay (this means, they are deterministically distributed 
with parameter ). 
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Figure 5: UML State Diagrams for two Architectural Patterns for Parallel Programming. 

 
In order to compare the approximated runtimes with simulation results, ten simulations have been performed for each 
model and for both architectural patterns, considering the variations on (a) the number of processes, (b) the number of 
phases ( ) for the Erlang-k distributions ( ), and (c) variations of the parameters  and k kE d λ  for the deterministic phase 
and the exponential phase, respectively. These variations represent different workloads for the parallel system. Table 1 
shows only four of these variations, which are considered relevant for the present analysis, since they accomplish the t-test 
criteria for comparing the two sets of values (Weiss, 1999; Montgomery, 1991). The errors between approximated and 
simulation results lie between 0% and 1.5% of the greater result in these simulations. Notice that the present method should 
be theoretically exact if the simulation model consists of only deterministically or only exponentially distributed runtimes. 
 
Some comments about the simulations and their results: 
 

1. The comparisons between approximated results, exact values, and simulation results are obtained for the 
Communicating Sequential Elements pattern in Figure 5. It is supposed that all processes have identically 
distributed runtimes, as workload. The accuracy of the approximation is tested by workload distributions of type 
Erlang. In order to be able to compare results, λ  and have been chosen to get the first moment constant, for 
different variances. 

k

 
 
 
 
 
 
 

 



Exact Workload 
States Runtime 

De-
approximation 

Simulation 
result 

)25.0(1E  256 39.84 39.84 39.64±0.27 

)5.0(2E  5120 33.75 33.77 33.35±0.42 

)0.1(4E  28.27 28.26±0.37 

)0.2(8E  

Too high computational 
costs for calculating it 25.43 25.67±0.53 

 
Table 1: Comparison of exact, approximated, and simulation results. 

 
The de-approximation column presents the computed runtime for approximated models. The )(λkE distributed 
runtimes are approximated by a model with a deterministically distributed runtime and an exponentially distributed 
phase. An exact results is obtained only when the process runtimes are modelled by )(1 λE or )(2 λE  distributed 

random variables. In the case of )(4 λE  and )(8 λE  distributed runtime, the computation costs of an exact  
Markovian analysis are too high in terms of the number of states in the state space. The approximation results and 
simulation results are compared to obtain information about the quality of the approximation method. The 
runtimes in the simulation models are also approximated by a model with a deterministically distributed runtime 
and an exponentially distributed phase. The approximated runtimes lie in the 0.99 confidence interval of the 
simulation results in Table 1. 
 

2. The comparisons between approximated runtimes of a model structured with the Communicating Sequential 
Elements pattern and the approximated runtimes of a model structured with the Manager-Workers pattern are 
obtained for various workloads, represented by the parameters moment and variance, when solving the Heat 
Equation. 

 
Workload Runtime CSE 

(seconds) 
Runtime MW 

(seconds) 
Moment = 5 
Variance=25 

41.66±0.43 46.63±0.38 

Moment = 5 
Variance=5 

30.27±0.26 32.46±0.22 

Moment = 5 
Variance=2.5 

27.42±0.22 29.15±0.18 

Moment = 5 
Variance=0 

21.0±0.17 20.97±0.21 

 
Table 2: Comparison of CSE and MW runtimes. 

 
It is noticeable from Table 2 that MW model presents always a higher execution runtime than the CSE model. The 
difference of the total expected runtime increases with the increasing variances of the process runtimes. In the case 
of constant process runtimes, the two models have very similar expected runtimes. This is, for the shortest runtime, 
the variance of the process runtimes is 0. 

 
6. Conclusion 
 
This paper presents a method to approximately compute the runtime of a parallel program. The method allows to evaluate 
models that are structurally more complex in  terms of processes and their states. Using deterministically and exponentially 
distributed runtimes, more realistic models of the real behaviour can be obtained than using only phase type distributions. 
Thus, the method is composed of two approximations: 
 

1. Runtimes are approximated by a deterministically distributed and an exponentially distributed runtime variable. 
2. The overall runtime is obtained by an approximate evaluation of the model. 

 
The experiments for solving the Heat Equation with CSE and MW models have shown that the approximation results differ 
less than 1.5 percent from exact Markovian results. 
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