Applying Idioms for Synchronization Mechanisms
Synchronizing communication components for the
One-dimensional Heat Equation

Jorge L. Ortega Arjona

IDepartamento de Matematicas Facultad de Ciencias, UNAM
jl oa@ ci enci as. unam nx

Abstract. The Idioms for Synchronization Mechanisms is a collectibpat-
terns related with the implementation of synchronizatiechanisms for the
communication components of parallel software systems s€lection of these
idioms take as input information (a) the design pattern & ¢ommunication
components to synchronize, (b) the memory organizatioheoparallel hard-
ware platform, and (c) the type of communication required.

In this paper, it is presented the application of the idiomisdynchronization
mechanisms to implement communication components forrieediensional
Heat Equation. The method used here takes the informatoon fhe Problem
Analysis, Coordination Design, and Communication Dessgfecting an idiom
for synchronization mechanisms, and providing elementsitits implementa-
tion.

1. Introduction

For the last forty years, a lot of work and experience has lgeghered in concurrent,
parallel, and distributed programming around the syndketion mechanisms originally
proposed during the late 1960s and 1970s by E.W. Dijkstrad4A.R. Hoare [6, 7, 8],
and P. Brinch-Hansen [1, 2, 3]. Further work and experieraeldeen gathered today,
such as the formalization of concepts and their repregentat different programming
languages.

Synchronization can be expressed in programming termsngsid@e primitives,
known as synchronization mechanisms. Nevertheless, yereuding such synchro-
nization mechanisms into a language seems not sufficieotdéating a complete parallel
program. They neither describe a complete coordinatiotesysior represent complete
communication subsystems. To be applied effectively, ymelsronization mechanisms
have to be organized and included within communicationcttires, which themselves
have to be composed and included in an overall coordinatrantsire [12].

Common synchronization mechanisms for concurrent, gratd distributed
programming can be expressed as idioms, that is, as sofpaéterns for programming
code in a particular programming language. Several of syrethsonization mechanisms
have been already expressed as idioms: the Semaphore th®@ritical Region idiom,
the Monitor idiom, the Message Passing idiom and the Remoieeure Call idiom [12].
All these idioms are presented by describing the use of thehspnization mechanism
with a particular parallel programming language, rathanth formal description of their
theory of operation.

The objective of this paper is to show how the idioms that glewa pattern de-
scription of well-known synchronization mechanisms campglied for a particular pro-
gramming problem under development. The description oflssonization mechanisms
as idioms should aid software designers and engineers w#seription of common pro-
gramming structures used for synchronizing communicadictivities within a specific
programming language, as well as providing guidelines eir thse and selection during
the design and implementation stages of a parallel softagstem. This development
of implementation structures constitutes the main objeadf the Detailed Design step
within the Pattern-based Parallel Software Design methad [

When implementing the components that act as synchroarzatechanisms within
the communication components of a parallel program, it {gartant to carefully consider
how both communication and synchronization are carriedbgusuch synchronization
mechanisms. lIdioms for Synchronization Mechanisms [1&jds$ out from many of the
sources, references, and descriptions available aboutdomplement the synchroniza-
tion between communicating components (or processes) afall@ program, with the
following advantages:

e The Idioms for Synchronization Mechanisms represent rogning constructs
that express synchronization beyond what is properly aediuwithin the parallel
programming language, but giving the impression that tiggris actually part of
the parallel language.

e The Idioms for Synchronization Mechanisms attempt to répce good program-
ming practices, describing some common programmed stegctused to detail
and implement the synchronization required by a DesigneRafior Commu-
nication Components. Thus, their objective is to help thitwsoe designer or
programmer understand and master features and detaile patiallel program-
ming language at hand, by providing low-level, languagejpedescriptions of
code that are used to synchronize between parallel progessmponents. These
Idioms, then, help to solve recurring programming problemsuch a parallel
programming language. There has been extensive expeaancesearch about
such codification in several different parallel programgianguages, but unfortu-
nately, they have not been related or linked with generalmamcation structures
or overall structures of parallel programs.

e The Idioms for Synchronization Mechanisms are descrigtibiat relate a syn-
chronization function (in run-time terms) with a coded fofm compile-time
terms). In many parallel languages, synchronization mashss are implemented
so their run-time function has little or no resemblance ® ¢bde that performs
it. Both, function and code, are difficult to relate, so th&ware designer or pro-
grammer cannot notice how communication and synchrooizatre carried out
by coded components. The Idioms here try to relate functmhcade, providing
dynamic and static information about the synchronizati@cihanisms.

e Idioms for Synchronization Mechanisms describe commoredqarogramming
structures based on data exchange and function call. As sumhare guidance
about how to achieve synchronization between processimgpooents. This is a
key for the success or failure of communication. Hence, dims proposed here
are classified based on (a) the memory organization and €ltyge of commu-
nication between parallel components. These issues da#pbt the selection of

synchronization mechanisms and the implementation of conization compo-
nents.

e The Idioms for Synchronization Mechanisms represent grogned forms as reg-
ular organizations of code, aiming to allow software desigrto understand the
synchronization between component, and therefore, redubeir cognitive bur-
den. Moreover, if these idioms are used and learnt, theywgaserstanding legacy
code, since programs tend to be easier to understand.

e The Idioms for Synchronization Mechanisms are based ondhereon concepts
and terms originally used for inter-process communicg#o®, 1, 7, 2, 8, 3], and
as such, they are a vehicle to develop terminology for impleting synchroniza-
tion components for parallel programs.

Nevertheless, as itis obvious, the Idioms for Synchroropdilechanisms present
the disadvantage of being non-portable, since they depeffebtures of the parallel pro-
gramming language. This does not exclude that several slfomexpressing synchro-
nization mechanisms can be developed for the differentlphpogramming languages
available.

2. Specification of the System

In the paperApplying Architectural Patterns for Parallel Programmingolving the One-
dimensional Heat Equatiofil], the Communicating Sequential Elements (CSE) Archi-
tectural Pattern was selected as a viable solution for tbedazation within the parallel
program that solves the One-dimensional Heat Equatiorntderdo apply the ISM, some
information is required related to the CSE Pattern, suchagarallel platform and pro-
gramming language.

We will use a SUN SPARC Enterprise T5120 Server, a multi-cgitared memory
parallel hardware platform, with 1-8 Core UltraSPARC T2 GHz processors (capable
of running 64 threads), 32 Gbytes RAM, and Solaris 10. Thggmming language will
be Java.

3. Specification of the Communication Components

In the paperApplying Design Patterns for Communication Componentsm@anicat-
ing CSE components for the One-dimensional Heat Equ4li8h the Shared Variable
Channel (SVC) Design Pattern was selected as a viable @olfdr the communication
components of the CSE pattern for solving the One-dimemsideat Equation. In order
to apply the ISM, some information related with the Sharedade Channel Pattern is
required. This information is summarized as follows.

3.1. The Shared Variable Channel pattern

The communication components are defined so they enablexthamge of temperature
values between neighboring wire segments as ordered dajtaTherefore, the Shared
Variable Channel pattern is an adequate solution for sualmaanications. Hence, the
design of the communication components can proceed asvio[@, 11, 13].

e Description of the communication The parallel program that solves the One-
dimensional Heat Equation problem is being developed on la-oare, shared

memory parallel hardware platform, programmable usingJéna programming
language. The CSE pattern describes a coordination in whidtiple Segment
objects act as concurrent processing software comporeaul,one applying the
same temperature operation, wher€aannel objects act as communication soft-
ware component which allow exchanging temperature valeesden sequential
components. Everpegmentobject communicates by sending its temperature
value from its local space to its neighboriBggmentobjects, and receiving in ex-
change their temperature values. This communication iswally asynchronous,
considering the exchange of a single temperature value pimeato one fashion
[9, 11, 13].

The Channel communication component acts as a single entity, allowhegeix-
change of information between processing software comgené&iven that the
available parallel platform is a multi-core, shared mengygtem, the behavior
of a channel component is modelled using shared variablésis,Ta couple of
shared variables are used to implement the channel compaserbidirectional,
shared memory communication means between elements. [#as that such
shared variables require to be safely modified by synchiognread and write op-
erations from the elements. Hence, the Java programmiggiéae provides the
basic elements for developing synchronization mechan{soch as semaphores
or monitors). This is required to preserve the order andynitieof the transferred
temperature values.

e Structure and dynamics. This section takes information of the Shared Variable
Channel design pattern, expressing the interaction betteesoftware compo-
nents that carry out the communication between paralléhsoé components for
the actual example.

1. Structure. The structure of the Shared Variable Channel pattern applie
for designing and implementing channel communication comepts of
the CSE pattern is shown in Figure 1 using a UML Collaborabagram
[5]. Notice that the channel component structure allowssymehronous,
bidirectional communication between two sequential el@seThe asyn-
chronous feature is achieved by allowing an array of tempega to be
stored, so the sender does not wait for the receiver [10, 13].

‘ temperature[]:Double ‘

3. read(tenperature) l TZ.Write(tenperature)
1. send(t enperature)

4.receive(tenperature)

j :SyncronizationMechanism 1

segment(i):Segment segment(i+1):Segment

—l— :SyncronizationMechanism I

4.receive(tenperature)

1. send(tenperature) l

2.write(tenperature) T3. read(tenperature)

‘ temperature[]:Double ‘

Figure 1. UML Collaboration Diagram of the Shared Variable Channel pattern used for asynchronously
exchange temperature values between sequential components of the CSE solution to the One-
dimensional Heat Equation.

segment(i):Segment ‘ :SyncMecI‘{ ‘ :Double ‘ :Double ‘ :SyncMecI‘{ segment(i+1):Segmen
i i
send(f gnper at ur e) .
[temperaturd wr|i { e(t enperatjure)
[1[temperature
L recei ve(tenperature)
réad(L enper at urle)
temperaturg [[*
temperaturé
send(t enper at ure)
temperatur
writs tlerper at ur e)
receijve(tenperature)
[read(t|énperat ure)
[] [temperaturl
temperaturé
T T T T

Figure 2. UML Sequence Diagram for the Shared Variable Channel pattern applied for exchanging
temperature values between two neighboring sequential elements of the CSE solution for the One-
dimensional Heat Equation.

2. Dynamics.This pattern actually emulates the operation of a chanmal co
ponent within the available shared memory, multi-core lperplatform.
Figure 2 shows the behavior of the participants of this paf@ the actual
example.

In this scenario, a point to point, bi-directional, asyrarfous communi-
cation exchange of temperature values of tijo@bl e is carried out, as
follows[13]:

— Thesegnent (i) sequential element sends its localnper at ur e
value by issuing aend(t enper at ur e) operation to the send-
ing Synchronization Mechanism.

— This Synchronization Mechanism verifies if teegnment (i +1)
sequential element is not reading thenper at ur e shared vari-
able. If this is the case, then it translates the sendingabiper,
allowing awri t e(t enper at ur e) operation of the data item
ont enper at ur e. Otherwise, it blocks the operation until the
t enper at ur e can be safely written.

— When thesegnent (i +1) attempts to receive the temperature
value, it does so by issuing raecei ve(t enper at ur e) re-
guest to the Synchronization Mechanism. This functionrretu
adoubl e type representing the temperature value stored in the
shared variable enper at ur e. Again, only if its counterpart se-
quential element (hersegnment (i))is notwriting ont enper at ur e,
the Synchronization Mechanism grantsead(t enper at ur e)
operation from it, returning the requestednper at ur e value.
This achieves the send and receive operations betweerboeigh
segment elements.

— On the other hand, when data flows in the opposite direction, a
similar procedure is carried out: the lodaénper at ur e value

of segnent (i +1) is sent by issuing aend(t enper at ur e)
operation to the Synchronization Mechanism.

3. Functional description of software componentshis section describes
each software component of the Shared Variable Channadrpais the
participant of the communication sub-system, establgfiswresponsibil-
ities, input, and output [13].

(a) Synchronization Mechanisms.This kind of components is used
to synchronize the access to the shared variables. Noatéhéy
should allow the translation a(fend() andr ecei ve() opera-
tions into adequate operations for writing to and readiognfthe
shared variables. Normally, synchronization mechanigesised
to keep the order and integrity of the shared data. In thigpaipe
objective is to obtain the development and implementatfdhese
synchronization mechanisms for the available shared mepaor
allel platform and in the Java programming language.

(b) Shared Variables. The responsibility of the shared variables is
to store the temperature values exchanged by sequentia¢ets.
These shared variables are designed here as simple varthbte
buffer during communication, for actually achieving anragyronous
communication.

4. Detailed Design

In the Detailed Design step [12], the software designeccsete or more
idioms as the basis for synchronization mechanisms. Frenddeisions
taken in the previous steps (Specification of the Probler Bfecifica-
tion of the System [11], and Specification of Communicati@mponents
[13]), the main objective now is to decide which synchrotimamecha-
nisms are to be used as part of the communication substesctur

4.1. Specification of the Synchronization Mechanism

— The scope.This section takes into consideration the basic previ-
ous information for solving the One-dimensional Heat Epumat
The objective is to look for the relevant information for dsing a
particular idiom as a synchronization mechanism.

For the One-dimensional Heat Equation, the factors thatafteet
selection of synchronization mechanisms are as follows:

+x The available hardware platform is a shared memory multi-
core computer, this is, a shared memory parallel platform,
programmed using Java as the programming language.

x The CSE pattern is used as an architectural pattern, requir-
ing two types of software components: elements and chan-
nels [11].

*x The Shared Variable Channel design pattern is selected for
the design and implementation of communication compo-
nents to support asynchronous communication between el-
ements [11].

Based on this information, the procedure for selecting &mdor
Synchronization Mechanisms for the One-dimensional HgatE
tion is as follows [12]:

(a) Select the type of synchronization mechanisime Shared
Variable Channel pattern requires a synchronization mech-
anism that controls the access and exchange of temperature
values between elements as software components that co-
operate. These temperature values are communicated using
a shared variable. Hence, the idioms that describe this type
of synchronization mechanism are the Semaphore idiom,
the Critical Region idiom, and the Monitor idiom [12].

(b) Confirm the type of synchronization mechani3ime use of
a shared memory platform confirms that the synchroniza-
tion mechanisms for communication components in this
example are semaphores, critical regions, or monitors.

(c) Select idioms for synchronization mechanis@emmuni-
cation between elements needs to be performed asynchignous
that is, no element should wait for any other element. This
is normally achieved using the Shared Variable Channel.
Nevertheless, this design pattern requires synchronizati
mechanisms directly supported by the Java programming
language. In Java, the Monitor idiom allows to develop a
mechanism used here to show how implementation of the
Shared Variable Channel pattern can be achieved using this
idiom.

(d) Verify the selected idiom&hecking the Context and Prob-
lem sections of the Monitor idiom [12]:

x Context: ‘A concurrent, parallel or distributed program
in which two or more software components execute simul-
taneously on a shared memory parallel platform, commu-
nicating by shared variables. Each software component
accesses at least one critical section that is, a sequence
of instructions that access the shared variable. At least
one software component writes to the shared variable’.

x Problem: “To maintain the integrity of data, it is neces-
sary to give a set of software components synchronous
and exclusive access to shared variables for an arbitrary
number of read and write operations’.

Comparing these sections with the synchronization require

ments of the actual example, it seems clear that the Mon-

itor idiom can be used as the synchronization mechanism
for the communication. The use of a shared memory plat-
form implies the use of semaphores, critical regions, or
monitors, whereas the need for asynchronous communica-
tion between elements points to the use of shared variables.
Nevertheless, given that Java directly supports monitbrs,
is therefore decided that the Monitor Idiom is used as the

basis for the synchronization mechanism.
The design of the parallel software system can now contisugu
the Solution section of the Monitor idiom, directly implenting
itin Java.
— Structure and Dynamics.

(a) Structure. The Monitor Idiom is used for implementing
the synchronization mechanisms of the channel communi-
cation components for the CSE pattern. The Monitor idiom
in Java is presented as follows. Notice that the monitor al-
lows a synchronization over the shared variables [12].

cl ass Monitor{

/| declarations of shared variables and | ocal data
private type shared_vari abl es;
private type | ocal _data;

/| declarations of nethods
public synchroni zed type nmethod(type formal _paraneters){

/'l operations_on_shared_vari abl es

int main(){
monitor m

m met hod(act ual _paraneters);

}

(b) Dynamics. Monitors are used in several ways as synchro-
nization mechanisms. Here, monitors are used for mu-
tual exclusion. The Monitor idiom actually synchronizes
the operation of the element components over shared vari-
ables within the available shared memory, multi-core par-
allel platform. Figure 3 shows a UML Sequence diagram
of the possible execution of two participants of this id-
iom as the synchronization mechanism within the Shared
Variable Channel pattern. Two parallel software compo-
nentssegnment (i) andsegnent (i +1) share an array
that represents the temperature and, since it is encapdulat
within the monitor, it can only be accessed through invoca-
tions to the monitor's methods.

In this scenario, the synchronization over the shared vari-

able is performed as follows:

«x The mutual exclusion between parallel software compo-
nents starts whesegnent (i) invokessend(temperature).
Assuming that theoni t or is free at that momensegnent (i)
obtains its lock and performsrite(temperature), which
allows accesses to the shared variable of Hpeable.

segment(i):Segment

‘ m:Monitor ‘ :Double

segment(i+1):Segmen*

p p

send(f gnperature)

[temperaturd wrii t e(t enperatfure)
temperaturé

Critical
Section

)

L] recei ve(tenperature)

[,

Y

read(tenperature)

temperatur

! g

Figure 3. UML Sequence Diagram for the Monitor idiom.

temperatu ré

x As long assegnent (i) remains inside theoni t or
segnent (i +1) may attempt to invoke methods of the
nmoni t or . However, asegnent (1) ownsthamnitor’s
lock, segnent (i +1) is not able to succeed. Thus, it
has to wait untisegnent (i) leaves theroni t or.

x Onlywhensegnent (i) leavestheoni t or,segment (i +1)
is able to access it. Notice that even though the two soft-
ware components proceed in parallel, only one software
component is able to access timeni t or , and so only
this component is able to access the shared variables in-
side the critical section at once.

— Synchronization AnalysisThis section describes the advantages
and disadvantages of the Monitor idiom as a base for the sgnch
nization code proposed [12].

(a) Advantages

x Two parallelsegnent software components are allowed
to execute non-deterministically and at different relativ
speeds, each acting as independently of the others as pos-
sible.

x Synchronization is carried out by atomic or indivisible
operations over theoni t or .

x Eachsegnent software component is able to execute
the critical section within theroni t or , accessing the
shared variables that represent temperatures in a safe and
secure manner. Any other software component attempt-
ing to enter thamni t or is blocked, and should wait
until the currensegnent software component finishes
its access.

x The shared variables maintain their integrity during the
entire communication exchange.

x The use of themoni t or enforces the correct use of op-
erations over the shared variables.

(b) Liabilities

*x Mutual exclusion using monitors needs to be implemented
at the compiler level. The compiler commonly associates
a semaphore with each monitor. However, this imple-

5. Implementation

mentation introduces potential delays when there the skarap
is committed to avait() operation when a monitor proce-
dure is called.

Mutual exclusion is sometimes not sufficient for program-
ming concurrent systems. Conditional synchronization is
also needed (a resource may be busy when itis required, a
buffer may be full when a write operation is pending and
so on). Therefore, most monitor-based systems provide
a new type of variable called a condition. These con-
dition variables should be incorporated during program-
ming: they are needed by the application and the mon-
itor implementation, managing them as synchronization
queues.

A software component must not be allowed to block while
holding a monitor lock. If a process has to wait for con-
dition synchronization, the implementation must release
the monitor for use by other software components and
gueue the software component on the condition variable.
It is essential that a component’s data is consistent before
it leaves the monitor. It might be desirable to ensure that
a component can only read (and not write) the monitor
data before leaving.

The implementation of monitors based on semaphores
has a potential problem with tlsagnal() operation. Sup-
pose a signaling component is active inside the monitor
and another component is freed from a condition queue
and is thus potentially active inside the monitor. By def-
inition, only one software component can be active in-
side a monitor at any time. A solution is to ensure that a
signal() is immediately followed by exit from the mon-
itor that is, the signaling process is forced to leave the
monitor. If this method is not used, one of the software
components may be delayed temporarily and resume ex-
ecution in the monitor later.

Monitors, as programming language synchronization mech-
anisms, must be implemented with great care and always
with awareness of the constraints imposed by the mecha-
nism itself.

In this section, the communication components and thepa&s/e monitors are imple-
mented as described in the Detailed Design step, using taep¥agramming language
[11, 13]. So, the implementation is presented here for @gieg the channel as commu-
nication and synchronization components. Neverthelbgsdesign and implementation
of the whole parallel software system goes beyond the agiugloses of the present

paper.

5.1. Communication components — Channels

A classMoni t or is used as the synchronization mechanism component of thee&h
Variable Channel pattern, in order to implement the c@ssnnel as follows [13]:

public final class Channel ({

private Monitor n0 = null;

private Monitor ml nul | ;

public Channel (){
nD new Monitor();
L new Monitor();

}

public void sendO(Channel c, double tenp){
if(tenp == null) throw new Nul | Poi nterException();
nD.wite(tenp);

public void sendl(Channel c, double tenp){
if(tenp == null) throw new Nul | Poi nterException();
nL. wite(tenp);

publ i ¢ doubl e recei veO(Channel c){
return nD.read();

}

publ i c doubl e recei vel(Channel c){
return nil.read();

}

Each channel componentis composed of two monitors whiolvdhe bi-directional
flow of data through the channel. In order to keep straightlifection of each message
flow, it is necessary to define two methods for sending andnandtvo methods for re-
ceiving. Each method distinguishes on which monitor of th@mel the message is writ-
ten. The channel is capable of allowing a simultaneousHtegietional flow. In the present
example, this is used to enforce the use of the Jacobi réaxgil]. In fact, using(a)

a channel communication structure with two-way flow of dékg,making each one of
them asynchronous, and latér) taking care on the communication exchanges between
segment components, are all design previsions for avoiditygpotential deadlock. In
parallel programming, it is generally advised that duriegidgn, all previsions should be
taken against the possibility of a deadlock [13].

Moreover, in case of modifying the present implementatimnexecuting on a
distributed memory parallel system, it would be necessaly to substitute the imple-
mentation of the clasShannel , but using the Message Passing Channel pattern [10, 12]
as a base for its definition.

5.2. Synchronization Mechanism — Monitors in Java

Based on the Monitor idiom and their implementation in theaJarogramming language,
the basic synchronization mechanism that controls thesadcethe temperature array is
presented as follows:

i nport java.util.Vector;

class Mnitor {
private int numVessages = O;
private final Vector tenperatures = new Vector();
public final synchronized void wite(double tenp)({

if(tenp == null) throw new Nul | Poi nter Exception();
numvessages++,

t enper at ur es. addEl enent (t enp) ;

i f (numvessages <= 0) notify();

public final synchronized double read(){
doubl e temp = 0.0d;
numvessages- - ;
whi | e(nunvessages < 0){

try{
wai t () ;
br eak;

}
catch(l nterruptedException e){

i f (numvessages >=0) break;
el se continue;

}
}
tenp = tenperatures.firstEl enent();
t enper at ur es. r enoveEl enent At (0) ;
return tenp;

The clasdvbni t or presents two synchronized methodsj t e() andr ead(),
which enables the safe modification of the temperaturegbaffd provides a mechanism
for asynchronous communication betwesagnent components. This class is used in
the following implementation stage as the basic elemerti@thannel components.

6. Summary

The Idioms for Synchronization Mechanisms are applied léyag with a method for
selecting them, in order to show how to select an idiom thpésavith the requirements of
the communication components present in the CSE solutitret®ne-dimensional Heat
Equation problem. The main objective of this paper is to destrate, with a particular
example, the detailed design and implementation that mayloked by a selected idiom.
Moreover, the application of the Idioms for Synchronizatdechanisms and the method
for selecting them is proposed to be used during the DetBitsign and Implementation
for other similar problems that involve the calculation dfetential equations for a one-
dimensional problem, executing on a shared memory papdébrm.

7. Ackowledgements

This work is part of an ongoing research in the Departmenfdaematicas. Facultad de
Ciencias, UNAM, funded by project IN109010-2, PAPIIT-DGARNAM, 2010.

References

[1] P. Brinch-HansenStructured Multiprogramming. Communications of the ACM, Vol.
15, No. 17. July, 1972.

[2] P. Brinch-HansenThe Programming Language Concurrent PascalEEE Transactions
on Software Engineering, Vol. 1, No. 2. June, 1975.

[3] P. Brinch-Hansemistributed Processes: A Concurrent Programming CongeptCom-
munications of the ACM, Vol.21, No. 11, 1978.

[4] E.W. Dijkstra Co-operating Sequential Processes In Programming Languages (ed.
Genuys), pp.43-112, Academic Press, 1968.

[5] M. Fowler,UML Distilled. Addison-Wesley Longman Inc., 1997.

[6] C.A.R. Hoare,Towards a theory of parallel programming. Operating System Tech-
niques, Academic Press, 1972.

[7] C.A.R Hoare,Monitors: An Operating System Structuring ConcepCommunications
of the ACM, Vol. 17, No. 10. October, 1974.

[8] C.A.R. HoareCommunicating Sequential Processes.Communications of the ACM,
Vol.21, No. 8, August 1978.

[9] J.L. Ortega-ArjonaThe Communicating Sequential Elements Pattern. An Actiital
Pattern for Domain Parallelism Proceedings of the 7th Conference on Pattern
Languages of Programming (PLoP2000), Allerton Park,disn USA, 2000.

[10] J.L. Ortega-Arjondesign Patterns for Communication Component$Proceedings of
the 12th European Conference on Pattern Languages of Brogng and Computing
(EuroPL0oP2007), Kloster Irsee, Germany, 2007.

[11] J.L. Ortega-ArjonaApplying Architectural Patterns for Parallel Programmin§olving
the One-dimensional Heat EquationProceedings of the 14th European Conference
on Pattern Languages of Programming and Computing (EulBPQ@9), Kloster
Irsee, Germany, 2009.

[12] J.L. Ortega-Arjon@atterns for Parallel Software Design. John Wiley & Sons, 2010.

[13] J.L. Ortega-Arjonapplying Design Patterns for Communication Componentsa@a-
nicating CSE components for the One-dimensional Heat BEguat Submitted to
the 15th European Conference on Pattern Languages of iRroang and Computing
(EuroPL0oP2010), Kloster Irsee, Germany, 2010.

