
Applying Idioms for Synchronization Mechanisms
Synchronizing communication components for the

One-dimensional Heat Equation

Jorge L. Ortega Arjona

1Departamento de Matemáticas Facultad de Ciencias, UNAM
jloa@fciencias.unam.mx

Abstract. The Idioms for Synchronization Mechanisms is a collection of pat-
terns related with the implementation of synchronization mechanisms for the
communication components of parallel software systems. The selection of these
idioms take as input information (a) the design pattern of the communication
components to synchronize, (b) the memory organization of the parallel hard-
ware platform, and (c) the type of communication required.

In this paper, it is presented the application of the idioms for synchronization
mechanisms to implement communication components for the One-dimensional
Heat Equation. The method used here takes the information from the Problem
Analysis, Coordination Design, and Communication Design,selecting an idiom
for synchronization mechanisms, and providing elements about its implementa-
tion.

1. Introduction

For the last forty years, a lot of work and experience has beengathered in concurrent,
parallel, and distributed programming around the synchronization mechanisms originally
proposed during the late 1960s and 1970s by E.W. Dijkstra [4], C.A.R. Hoare [6, 7, 8],
and P. Brinch-Hansen [1, 2, 3]. Further work and experience has been gathered today,
such as the formalization of concepts and their representation in different programming
languages.

Synchronization can be expressed in programming terms as language primitives,
known as synchronization mechanisms. Nevertheless, merely including such synchro-
nization mechanisms into a language seems not sufficient forcreating a complete parallel
program. They neither describe a complete coordination system nor represent complete
communication subsystems. To be applied effectively, the synchronization mechanisms
have to be organized and included within communication structures, which themselves
have to be composed and included in an overall coordination structure [12].

Common synchronization mechanisms for concurrent, parallel and distributed
programming can be expressed as idioms, that is, as softwarepatterns for programming
code in a particular programming language. Several of such synchronization mechanisms
have been already expressed as idioms: the Semaphore idiom,the Critical Region idiom,
the Monitor idiom, the Message Passing idiom and the Remote Procedure Call idiom [12].
All these idioms are presented by describing the use of the synchronization mechanism
with a particular parallel programming language, rather than a formal description of their
theory of operation.



The objective of this paper is to show how the idioms that provide a pattern de-
scription of well-known synchronization mechanisms can beapplied for a particular pro-
gramming problem under development. The description of synchronization mechanisms
as idioms should aid software designers and engineers with adescription of common pro-
gramming structures used for synchronizing communicationactivities within a specific
programming language, as well as providing guidelines on their use and selection during
the design and implementation stages of a parallel softwaresystem. This development
of implementation structures constitutes the main objective of the Detailed Design step
within the Pattern-based Parallel Software Design method [12].

When implementing the components that act as synchronization mechanisms within
the communication components of a parallel program, it is important to carefully consider
how both communication and synchronization are carried outby such synchronization
mechanisms. Idioms for Synchronization Mechanisms [12] stands out from many of the
sources, references, and descriptions available about howto implement the synchroniza-
tion between communicating components (or processes) of a parallel program, with the
following advantages:

• The Idioms for Synchronization Mechanisms represent programming constructs
that express synchronization beyond what is properly included within the parallel
programming language, but giving the impression that theiruse is actually part of
the parallel language.

• The Idioms for Synchronization Mechanisms attempt to reproduce good program-
ming practices, describing some common programmed structures used to detail
and implement the synchronization required by a Design Pattern for Commu-
nication Components. Thus, their objective is to help the software designer or
programmer understand and master features and details of the parallel program-
ming language at hand, by providing low-level, language specific descriptions of
code that are used to synchronize between parallel processing components. These
Idioms, then, help to solve recurring programming problemsin such a parallel
programming language. There has been extensive experienceand research about
such codification in several different parallel programming languages, but unfortu-
nately, they have not been related or linked with general communication structures
or overall structures of parallel programs.

• The Idioms for Synchronization Mechanisms are descriptions that relate a syn-
chronization function (in run-time terms) with a coded form(in compile-time
terms). In many parallel languages, synchronization mechanisms are implemented
so their run-time function has little or no resemblance to the code that performs
it. Both, function and code, are difficult to relate, so the software designer or pro-
grammer cannot notice how communication and synchronization are carried out
by coded components. The Idioms here try to relate function and code, providing
dynamic and static information about the synchronization mechanisms.

• Idioms for Synchronization Mechanisms describe common coded programming
structures based on data exchange and function call. As such, they are guidance
about how to achieve synchronization between processing components. This is a
key for the success or failure of communication. Hence, the Idioms proposed here
are classified based on (a) the memory organization and (b) the type of commu-
nication between parallel components. These issues deeplyaffect the selection of



synchronization mechanisms and the implementation of communication compo-
nents.

• The Idioms for Synchronization Mechanisms represent programmed forms as reg-
ular organizations of code, aiming to allow software designers to understand the
synchronization between component, and therefore, reducing their cognitive bur-
den. Moreover, if these idioms are used and learnt, they easeunderstanding legacy
code, since programs tend to be easier to understand.

• The Idioms for Synchronization Mechanisms are based on the common concepts
and terms originally used for inter-process communication[4, 6, 1, 7, 2, 8, 3], and
as such, they are a vehicle to develop terminology for implementing synchroniza-
tion components for parallel programs.

Nevertheless, as it is obvious, the Idioms for Synchronization Mechanisms present
the disadvantage of being non-portable, since they depend on features of the parallel pro-
gramming language. This does not exclude that several idioms for expressing synchro-
nization mechanisms can be developed for the different parallel programming languages
available.

2. Specification of the System

In the paper,Applying Architectural Patterns for Parallel Programming. Solving the One-
dimensional Heat Equation[11], the Communicating Sequential Elements (CSE) Archi-
tectural Pattern was selected as a viable solution for the coordination within the parallel
program that solves the One-dimensional Heat Equation. In order to apply the ISM, some
information is required related to the CSE Pattern, such as the parallel platform and pro-
gramming language.

We will use a SUN SPARC Enterprise T5120 Server, a multi-core, shared memory
parallel hardware platform, with 1-8 Core UltraSPARC T2 1.2GHz processors (capable
of running 64 threads), 32 Gbytes RAM, and Solaris 10. The programming language will
be Java.

3. Specification of the Communication Components

In the paperApplying Design Patterns for Communication Components. Communicat-
ing CSE components for the One-dimensional Heat Equation[13], the Shared Variable
Channel (SVC) Design Pattern was selected as a viable solution for the communication
components of the CSE pattern for solving the One-dimensional Heat Equation. In order
to apply the ISM, some information related with the Shared Variable Channel Pattern is
required. This information is summarized as follows.

3.1. The Shared Variable Channel pattern

The communication components are defined so they enable the exchange of temperature
values between neighboring wire segments as ordered data [13]. Therefore, the Shared
Variable Channel pattern is an adequate solution for such communications. Hence, the
design of the communication components can proceed as follows [9, 11, 13].

• Description of the communication. The parallel program that solves the One-
dimensional Heat Equation problem is being developed on a multi-core, shared



memory parallel hardware platform, programmable using theJava programming
language. The CSE pattern describes a coordination in whichmultiple Segment
objects act as concurrent processing software components,each one applying the
same temperature operation, whereasChannelobjects act as communication soft-
ware component which allow exchanging temperature values between sequential
components. EverySegmentobject communicates by sending its temperature
value from its local space to its neighboringSegmentobjects, and receiving in ex-
change their temperature values. This communication is normally asynchronous,
considering the exchange of a single temperature value, in aone to one fashion
[9, 11, 13].
TheChannel communication component acts as a single entity, allowing the ex-
change of information between processing software components. Given that the
available parallel platform is a multi-core, shared memorysystem, the behavior
of a channel component is modelled using shared variables. Thus, a couple of
shared variables are used to implement the channel component as a bidirectional,
shared memory communication means between elements. It is clear that such
shared variables require to be safely modified by synchronizing read and write op-
erations from the elements. Hence, the Java programming language provides the
basic elements for developing synchronization mechanisms(such as semaphores
or monitors). This is required to preserve the order and integrity of the transferred
temperature values.

• Structure and dynamics. This section takes information of the Shared Variable
Channel design pattern, expressing the interaction between the software compo-
nents that carry out the communication between parallel software components for
the actual example.

1. Structure. The structure of the Shared Variable Channel pattern applied
for designing and implementing channel communication components of
the CSE pattern is shown in Figure 1 using a UML CollaborationDiagram
[5]. Notice that the channel component structure allows an asynchronous,
bidirectional communication between two sequential elements. The asyn-
chronous feature is achieved by allowing an array of temperatures to be
stored, so the sender does not wait for the receiver [10, 13].

:SyncronizationMechanism

temperature[]:Double

:SyncronizationMechanism

temperature[]:Double

1.send(temperature)

2.write(temperature)3.read(temperature)

1.send(temperature)

2.write(temperature) 3.read(temperature)

4.receive(temperature)

4.receive(temperature)

segment(i):Segment segment(i+1):Segment

Figure 1. UML Collaboration Diagram of the Shared Variable Channel pattern used for asynchronously
exchange temperature values between sequential components of the CSE solution to the One-
dimensional Heat Equation.



segment(i):Segment :SyncMech :Double :SyncMech segment(i+1):Segment

temperature
temperature

:Double

temperature
temperature

temperature

temperature

temperature

send(temperature)
write(temperature)

write(temperature)

receive(temperature)

read(temperature)

read(temperature)

receive(temperature)

send(temperature)

Figure 2. UML Sequence Diagram for the Shared Variable Channel pattern applied for exchanging
temperature values between two neighboring sequential elements of the CSE solution for the One-
dimensional Heat Equation.

2. Dynamics.This pattern actually emulates the operation of a channel com-
ponent within the available shared memory, multi-core parallel platform.
Figure 2 shows the behavior of the participants of this pattern for the actual
example.

In this scenario, a point to point, bi-directional, asynchronous communi-
cation exchange of temperature values of typeDouble is carried out, as
follows[13]:

– Thesegment(i) sequential element sends its localtemperature
value by issuing asend(temperature) operation to the send-
ing Synchronization Mechanism.

– This Synchronization Mechanism verifies if thesegment(i+1)
sequential element is not reading thetemperature shared vari-
able. If this is the case, then it translates the sending operation,
allowing awrite(temperature) operation of the data item
on temperature. Otherwise, it blocks the operation until the
temperature can be safely written.

– When thesegment(i+1) attempts to receive the temperature
value, it does so by issuing areceive(temperature) re-
quest to the Synchronization Mechanism. This function returns
a double type representing the temperature value stored in the
shared variabletemperature. Again, only if its counterpart se-
quential element (here,segment(i)) is not writing ontemperature,
the Synchronization Mechanism grants aread(temperature)
operation from it, returning the requestedtemperature value.
This achieves the send and receive operations between neighboring
segment elements.

– On the other hand, when data flows in the opposite direction, a
similar procedure is carried out: the localtemperature value



of segment(i+1) is sent by issuing asend(temperature)
operation to the Synchronization Mechanism.

3. Functional description of software components.This section describes
each software component of the Shared Variable Channel pattern as the
participant of the communication sub-system, establishing its responsibil-
ities, input, and output [13].

(a) Synchronization Mechanisms.This kind of components is used
to synchronize the access to the shared variables. Notice that they
should allow the translation ofsend() andreceive() opera-
tions into adequate operations for writing to and reading from the
shared variables. Normally, synchronization mechanisms are used
to keep the order and integrity of the shared data. In this paper, the
objective is to obtain the development and implementation of these
synchronization mechanisms for the available shared memory par-
allel platform and in the Java programming language.

(b) Shared Variables. The responsibility of the shared variables is
to store the temperature values exchanged by sequential elements.
These shared variables are designed here as simple variables that
buffer during communication, for actually achieving an asynchronous
communication.

4. Detailed Design
In the Detailed Design step [12], the software designer selects one or more
idioms as the basis for synchronization mechanisms. From the decisions
taken in the previous steps (Specification of the Problem [11], Specifica-
tion of the System [11], and Specification of Communication Components
[13]), the main objective now is to decide which synchronization mecha-
nisms are to be used as part of the communication substructures.

4.1. Specification of the Synchronization Mechanism

– The scope.This section takes into consideration the basic previ-
ous information for solving the One-dimensional Heat Equation.
The objective is to look for the relevant information for choosing a
particular idiom as a synchronization mechanism.

For the One-dimensional Heat Equation, the factors that nowaffect
selection of synchronization mechanisms are as follows:

∗ The available hardware platform is a shared memory multi-
core computer, this is, a shared memory parallel platform,
programmed using Java as the programming language.

∗ The CSE pattern is used as an architectural pattern, requir-
ing two types of software components: elements and chan-
nels [11].

∗ The Shared Variable Channel design pattern is selected for
the design and implementation of communication compo-
nents to support asynchronous communication between el-
ements [11].



Based on this information, the procedure for selecting an Idiom for
Synchronization Mechanisms for the One-dimensional Heat Equa-
tion is as follows [12]:

(a) Select the type of synchronization mechanism.The Shared
Variable Channel pattern requires a synchronization mech-
anism that controls the access and exchange of temperature
values between elements as software components that co-
operate. These temperature values are communicated using
a shared variable. Hence, the idioms that describe this type
of synchronization mechanism are the Semaphore idiom,
the Critical Region idiom, and the Monitor idiom [12].

(b) Confirm the type of synchronization mechanism.The use of
a shared memory platform confirms that the synchroniza-
tion mechanisms for communication components in this
example are semaphores, critical regions, or monitors.

(c) Select idioms for synchronization mechanisms.Communi-
cation between elements needs to be performed asynchronously
that is, no element should wait for any other element. This
is normally achieved using the Shared Variable Channel.
Nevertheless, this design pattern requires synchronization
mechanisms directly supported by the Java programming
language. In Java, the Monitor idiom allows to develop a
mechanism used here to show how implementation of the
Shared Variable Channel pattern can be achieved using this
idiom.

(d) Verify the selected idioms.Checking the Context and Prob-
lem sections of the Monitor idiom [12]:
∗ Context: ‘A concurrent, parallel or distributed program

in which two or more software components execute simul-
taneously on a shared memory parallel platform, commu-
nicating by shared variables. Each software component
accesses at least one critical section that is, a sequence
of instructions that access the shared variable. At least
one software component writes to the shared variable’.

∗ Problem: ‘To maintain the integrity of data, it is neces-
sary to give a set of software components synchronous
and exclusive access to shared variables for an arbitrary
number of read and write operations’.

Comparing these sections with the synchronization require-
ments of the actual example, it seems clear that the Mon-
itor idiom can be used as the synchronization mechanism
for the communication. The use of a shared memory plat-
form implies the use of semaphores, critical regions, or
monitors, whereas the need for asynchronous communica-
tion between elements points to the use of shared variables.
Nevertheless, given that Java directly supports monitors,it
is therefore decided that the Monitor Idiom is used as the



basis for the synchronization mechanism.
The design of the parallel software system can now continue using
the Solution section of the Monitor idiom, directly implementing
it in Java.

– Structure and Dynamics.
(a) Structure. The Monitor Idiom is used for implementing

the synchronization mechanisms of the channel communi-
cation components for the CSE pattern. The Monitor idiom
in Java is presented as follows. Notice that the monitor al-
lows a synchronization over the shared variables [12].

class Monitor{
...
// declarations of shared variables and local data
private type shared_variables;
private type local_data;
...
// declarations of methods
public synchronized type method(type formal_parameters){

...
// operations_on_shared_variables
...

}
}
...
int main(){

...
monitor m;
...
m.method(actual_parameters);

}

(b) Dynamics. Monitors are used in several ways as synchro-
nization mechanisms. Here, monitors are used for mu-
tual exclusion. The Monitor idiom actually synchronizes
the operation of the element components over shared vari-
ables within the available shared memory, multi-core par-
allel platform. Figure 3 shows a UML Sequence diagram
of the possible execution of two participants of this id-
iom as the synchronization mechanism within the Shared
Variable Channel pattern. Two parallel software compo-
nentssegment(i) andsegment(i+1) share an array
that represents the temperature and, since it is encapsulated
within the monitor, it can only be accessed through invoca-
tions to the monitor’s methods.

In this scenario, the synchronization over the shared vari-
able is performed as follows:
∗ The mutual exclusion between parallel software compo-

nents starts whensegment(i) invokessend(temperature).
Assuming that themonitor is free at that moment,segment(i)
obtains its lock and performswrite(temperature), which
allows accesses to the shared variable of typeDouble.



temperature
temperature

temperature
temperature

segment(i):Segment :Double segment(i+1):Segmentm:Monitor

�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

send(temperature)
write(temperature)

receive(temperature)

read(temperature)

Critical
Section

Figure 3. UML Sequence Diagram for the Monitor idiom.

∗ As long assegment(i) remains inside themonitor
segment(i+1) may attempt to invoke methods of the
monitor. However, assegment(i)owns themonitor’s
lock, segment(i+1) is not able to succeed. Thus, it
has to wait untilsegment(i) leaves themonitor.

∗ Only whensegment(i) leaves themonitor,segment(i+1)
is able to access it. Notice that even though the two soft-
ware components proceed in parallel, only one software
component is able to access themonitor, and so only
this component is able to access the shared variables in-
side the critical section at once.

– Synchronization Analysis.This section describes the advantages
and disadvantages of the Monitor idiom as a base for the synchro-
nization code proposed [12].

(a) Advantages
∗ Two parallelsegment software components are allowed

to execute non-deterministically and at different relative
speeds, each acting as independently of the others as pos-
sible.

∗ Synchronization is carried out by atomic or indivisible
operations over themonitor.

∗ Eachsegment software component is able to execute
the critical section within themonitor, accessing the
shared variables that represent temperatures in a safe and
secure manner. Any other software component attempt-
ing to enter themonitor is blocked, and should wait
until the currentsegment software component finishes
its access.

∗ The shared variables maintain their integrity during the
entire communication exchange.

∗ The use of themonitor enforces the correct use of op-
erations over the shared variables.

(b) Liabilities
∗ Mutual exclusion using monitors needs to be implemented

at the compiler level. The compiler commonly associates
a semaphore with each monitor. However, this imple-



mentation introduces potential delays when there the semaphore
is committed to await() operation when a monitor proce-
dure is called.

∗ Mutual exclusion is sometimes not sufficient for program-
ming concurrent systems. Conditional synchronization is
also needed (a resource may be busy when it is required, a
buffer may be full when a write operation is pending and
so on). Therefore, most monitor-based systems provide
a new type of variable called a condition. These con-
dition variables should be incorporated during program-
ming: they are needed by the application and the mon-
itor implementation, managing them as synchronization
queues.

∗ A software component must not be allowed to block while
holding a monitor lock. If a process has to wait for con-
dition synchronization, the implementation must release
the monitor for use by other software components and
queue the software component on the condition variable.

∗ It is essential that a component’s data is consistent before
it leaves the monitor. It might be desirable to ensure that
a component can only read (and not write) the monitor
data before leaving.

∗ The implementation of monitors based on semaphores
has a potential problem with thesignal() operation. Sup-
pose a signaling component is active inside the monitor
and another component is freed from a condition queue
and is thus potentially active inside the monitor. By def-
inition, only one software component can be active in-
side a monitor at any time. A solution is to ensure that a
signal() is immediately followed by exit from the mon-
itor that is, the signaling process is forced to leave the
monitor. If this method is not used, one of the software
components may be delayed temporarily and resume ex-
ecution in the monitor later.

∗ Monitors, as programming language synchronization mech-
anisms, must be implemented with great care and always
with awareness of the constraints imposed by the mecha-
nism itself.

5. Implementation

In this section, the communication components and their respective monitors are imple-
mented as described in the Detailed Design step, using the Java programming language
[11, 13]. So, the implementation is presented here for developing the channel as commu-
nication and synchronization components. Nevertheless, this design and implementation
of the whole parallel software system goes beyond the actualpurposes of the present
paper.



5.1. Communication components – Channels

A classMonitor is used as the synchronization mechanism component of the Shared
Variable Channel pattern, in order to implement the classChannel as follows [13]:

public final class Channel {
private Monitor m0 = null;
private Monitor m1 = null;
public Channel(){

m0 = new Monitor();
m1 = new Monitor();

}
public void send0(Channel c, double temp){

if(temp == null) throw new NullPointerException();
m0.write(temp);

}
public void send1(Channel c, double temp){

if(temp == null) throw new NullPointerException();
m1.write(temp);

}
public double receive0(Channel c){

return m0.read();
}
public double receive1(Channel c){

return m1.read();
}

}

Each channel component is composed of two monitors which allow the bi-directional
flow of data through the channel. In order to keep straight thedirection of each message
flow, it is necessary to define two methods for sending and another two methods for re-
ceiving. Each method distinguishes on which monitor of the channel the message is writ-
ten. The channel is capable of allowing a simultaneous bi-directional flow. In the present
example, this is used to enforce the use of the Jacobi relaxation [11]. In fact, using(a)
a channel communication structure with two-way flow of data,(b) making each one of
them asynchronous, and later,(c) taking care on the communication exchanges between
segment components, are all design previsions for avoidingany potential deadlock. In
parallel programming, it is generally advised that during design, all previsions should be
taken against the possibility of a deadlock [13].

Moreover, in case of modifying the present implementation for executing on a
distributed memory parallel system, it would be necessary only to substitute the imple-
mentation of the classChannel, but using the Message Passing Channel pattern [10, 12]
as a base for its definition.

5.2. Synchronization Mechanism – Monitors in Java

Based on the Monitor idiom and their implementation in the Java programming language,
the basic synchronization mechanism that controls the access to the temperature array is
presented as follows:

import java.util.Vector;
class Monitor {

private int numMessages = 0;
private final Vector temperatures = new Vector();
public final synchronized void write(double temp){



if(temp == null) throw new NullPointerException();
numMessages++;
temperatures.addElement(temp);
if(numMessages <= 0) notify();

}
public final synchronized double read(){

double temp = 0.0d;
numMessages--;
while(numMessages < 0){

try{
wait();
break;

}
catch(InterruptedException e){

if(numMessages >=0) break;
else continue;

}
}
temp = temperatures.firstElement();
temperatures.removeElementAt(0);
return temp;

}
}

The classMonitor presents two synchronized methods,write() andread(),
which enables the safe modification of the temperatures buffer and provides a mechanism
for asynchronous communication betweensegment components. This class is used in
the following implementation stage as the basic element of the channel components.

6. Summary

The Idioms for Synchronization Mechanisms are applied herealong with a method for
selecting them, in order to show how to select an idiom that copes with the requirements of
the communication components present in the CSE solution tothe One-dimensional Heat
Equation problem. The main objective of this paper is to demonstrate, with a particular
example, the detailed design and implementation that may beguided by a selected idiom.
Moreover, the application of the Idioms for Synchronization Mechanisms and the method
for selecting them is proposed to be used during the DetailedDesign and Implementation
for other similar problems that involve the calculation of differential equations for a one-
dimensional problem, executing on a shared memory parallelplatform.

7. Ackowledgements

This work is part of an ongoing research in the Departmento deMatemáticas. Facultad de
Ciencias, UNAM, funded by project IN109010-2, PAPIIT-DGAPA-UNAM, 2010.

References

[1] P. Brinch-Hansen,Structured Multiprogramming. Communications of the ACM, Vol.
15, No. 17. July, 1972.

[2] P. Brinch-Hansen,The Programming Language Concurrent Pascal.IEEE Transactions
on Software Engineering, Vol. 1, No. 2. June, 1975.

[3] P. Brinch-HansenDistributed Processes: A Concurrent Programming Concept., Com-
munications of the ACM, Vol.21, No. 11, 1978.



[4] E.W. Dijkstra Co-operating Sequential Processes, In Programming Languages (ed.
Genuys), pp.43-112, Academic Press, 1968.

[5] M. Fowler,UML Distilled. Addison-Wesley Longman Inc., 1997.

[6] C.A.R. Hoare,Towards a theory of parallel programming. Operating System Tech-
niques, Academic Press, 1972.

[7] C.A.R Hoare,Monitors: An Operating System Structuring Concept.Communications
of the ACM, Vol. 17, No. 10. October, 1974.

[8] C.A.R. HoareCommunicating Sequential Processes.Communications of the ACM,
Vol.21, No. 8, August 1978.

[9] J.L. Ortega-ArjonaThe Communicating Sequential Elements Pattern. An Architectural
Pattern for Domain Parallelism, Proceedings of the 7th Conference on Pattern
Languages of Programming (PLoP2000), Allerton Park, Illinois, USA, 2000.

[10] J.L. Ortega-ArjonaDesign Patterns for Communication Components, Proceedings of
the 12th European Conference on Pattern Languages of Programming and Computing
(EuroPLoP2007), Kloster Irsee, Germany, 2007.

[11] J.L. Ortega-ArjonaApplying Architectural Patterns for Parallel Programming. Solving
the One-dimensional Heat Equation, Proceedings of the 14th European Conference
on Pattern Languages of Programming and Computing (EuroPLoP2009), Kloster
Irsee, Germany, 2009.

[12] J.L. Ortega-ArjonaPatterns for Parallel Software Design. John Wiley & Sons, 2010.

[13] J.L. Ortega-ArjonaApplying Design Patterns for Communication Components. Commu-
nicating CSE components for the One-dimensional Heat Equation, Submitted to
the 15th European Conference on Pattern Languages of Programming and Computing
(EuroPLoP2010), Kloster Irsee, Germany, 2010.


