Applying Design Patterns for Communication Components
Communicating Parallel Layer components for an Hypercube
Sorting

Jorge L. Ortega Arjona

!Departamento de Matematicas Facultad de Ciencias, UNAM
j 1 oa@ ci enci as. unam nx

Abstract. This paper presents the design and implementation of thentom
cation components for a parallel version of the HypercubeiSg The method
used here makes use of Design Patterns for Communicatiop@uents, which
take information from the Problem Analysis and Coordinatizesign, and pro-
vide elements about its implementation.

1. Introduction

Parallel programming is characterized by a growing set ddlfid hardware architectures,
programming paradigms, and parallel languages. Thist@tumakes difficult to propose
just a single approach containing all the details to desighiaplement communication
components for all parallel software systems. Hence, tregddPatterns for Communi-
cation Components [15, 17] are proposed as an effort to hetpgrammer to design the
communication components depending on particular chenatits and features of the
communication to be carried out between the processing onergs, when designing a
parallel program.

The Design Patterns for Communication Components focugsaribing and re-
fining the communication components of a parallel prograynddscribing common pro-
gramming structures used for communicating, exchangitg alarequesting operations,
between processing components. Their application dyrelegpbends on the Architectural
Pattern for Parallel Programming [13, 16, 17] which theya# of, detailing a commu-
nication and synchronization function as a local problemadl, providing a form as a local
solution of software components for such a communicatioblem.

When designing the communication components of a paratkglram, it is impor-
tant to think carefully how communication and synchronaatre to be actually carried
out by those communication components.

However, design patterns for communication are not apptiesolation. A par-
allel program is the result of applying several patternsifr@nt levels of design and
implementation. The design and implementation of a wholalf program requires
applying more than a single pattern. Different patternsagaied at different levels of
design. Designing and programming a parallel softwareesysequires, then, several
patterns at least at three levels of design: coordinatiomnsunication, and synchro-
nization. Several different patterns have been proposeédch one of these levels: ar-
chitectural patterns for coordination, design pattermsc@mmunication, and idioms for

synchronization [17]. The present paper preciselly fosusethe second level of design:
communication design.

In this paper, it is presented the application of the mudtigimote call pattern for
designing the communication components of a parallel pmogthat solves the Hyper-
cube Sorting. For this problem, the papApplying Architectural Patterns for Parallel
Programming. An Hypercube Sorting18] has already presented the Communicating
Sequential Elements pattern for designing the coordindgael of the whole parallel
program. Here, this paper continues and complements thgndetthe whole parallel
program, by applying the multiple remote call design patfer continuing the design of
the whole parallel program that solves the Hypercube Sprfirhe design development
here is part of the method for designing parallel programsasented in the bodiPat-
tern for Parallel Software Desigfl7]. However, in this paper, only the Communication
Design is specifically performed to solve the communicatexguirements of the Hyper-
cube Sorting, making use of Design Patterns for Commuiicafiomponents [15, 17],
taking information from the architectural decisions in]jl&hd providing elements about
the design and implementation of communication comporfentee Hypercube Sorting.

2. The Parallel Layers pattern: the Hypercube Sorting case

In the papet‘Applying Architectural Patterns for Parallel Programmin An Hypercube
Sorting” [18], the Parallel Layers Architectural Pattern has bedecsed as a viable so-
lution for an Hypercube Sorting. Now, in order to apply thesl@a Patterns for Commu-
nication Components for developing the communication comepts for this example,
some information related with the Parallel Layers patterd the parallel platform and
programming language is required. This information is samped as follows.

2.1. The Parallel Layers pattern

e Description of the coordination. The Parallel Layers pattern makes use of func-
tional parallelism to execute sub-algorithms, allowing imultaneous existence
and execution of more than one instance of a layer compohemnigh time. Each
of these instances are composed of the simplest sub-dlgwitin a layered sys-
tem, an operation involves the execution of operations verse layers. These
operations are triggered by a call, and data is verticalaresth among layers in
the form of arguments for these function calls. During theoeion of opera-
tions in each layer, usually the higher layers have to waitfeesult from lower
layers. However, if each layer is represented by more th@component, they
can be executed in parallel and service new requests. Thnerett the same time,
several ordered sets of operations are carried out by the sgstem. Several
computations can be overlapped in time [14, 18, 17].

e Structure and dynamics

1. Structure When applying the PL pattern for the Hypercube Sorting, the
set to be sorted is divided over and over until a simple opmraan be car-
ried out simultaneously to obtain a partial sorting. Onae hachieved,
the sorted result is sent back to the component above, angbthiag is
performed again, over and over, until reaching the root comept of the
whole structure. Hence, the structure of the actual sotutieolves a tree-
like logical structure. Thus, the solution is presentedtaseof processing

PO:Layer

/\

PO:Layer Pl:Layer

EEN N

PO:Layer, P2:Layer| Pl:Layer P3:Layer

SN SN SN SN

PO:Layer| | P4:Layer| | P2:Layer| | P6:Layer| | P1:Layer| | P5:Layer| | P3:Layer| | P7:Layer

Figure 1. Object Diagram of PL for solving the Hypercube Sorting.

layer components. These are identical components thattsimeously ex-
ist and process during the execution time. An Object Diagrapresent-
ing this structure is shown in Figure 3 [18, 17].

. Dynamics A scenario to describe a basic run-time behavior of the PL

pattern for solving the Hypercube Sorting is described 8svis. Notice

that all layer components, as basic processing softwargacoents, are
active at the same time. Every layer component performséaheegivi-

sion, and once the set is completely divided, the layer carapbsorts
its subset, providing its result to the layer component abdwhis opera-
tion is repeated until the whole set is sorted and made &laita the root
component of the tree structure as shown in Figure 4 [18, 17].

‘ PO:Layer‘ ‘ P1:Layer‘ ‘ P2:Layer‘ ‘ P3:Layer‘ ‘ P4:Layer‘ ‘ P5:Layer‘ ‘ P6:LayerH P7:Layer‘

]
n/4]n—/4‘
[[
| | n/8
n/8
T e [0 |
Sort(n/8) Sort(n/8) Sort(n/8) Sort(n/8) Sort(/e) | Sort(n/8) | Sort(n/8) | Sont(n/8) |
n/8
g || 8 | e
Sort(n/4) Sort@ Sort(n/4) Sort(n/4)
n/ W\
Sont(n/2) Sont(n/2)
72
Sort@
[n]
T T T T T T T T

Figure 2. Sequence Diagram of PL for Hypercube Sorting.

2.2. Information about parallel platform and programming | anguage

Information about parallel platform and programming laage. The parallel platform
available for this parallel program is a cluster of compsitepecifically, a dual-core server
(Intel dual Xeon processors, 1 Gigabyte RAM, 80 Gigabyte©)D6 nodes (each with
Intel Pentium IV processors, 512 Megabytes RAM, 40 GigabitBD), which commu-
nicate through an Ethernet network. The parallel appbeafor this platform is pro-
grammed using the Java programming language [18].

3. Communication Design

3.1. Specification of Communication Components

e The scope.This section takes into consideration the basic infornmagibout the
parallel hardware platform and the programming languagel,uas well as the
PL pattern as the selected coordination for solving the IHy®se Sorting. The
objective is to look for the relevant information for chawgia particular design
pattern as a communication structure.

Based on the information about the parallel platform (ardhisted memory clus-
ter), the programming language (Java) and the descriptieoftwvare components
for the PL pattern presented in the previous section, thegahare for selecting a
Design Pattern for the Communication Components for thegryybe Sorting is
presented as follows [15, 17]:

1. Consider the architectural pattern selected in the presistep.From the
PL pattern description, the design patterns which provataeraunication
components and allow the behavior as described by thistaothral pat-
tern for a coordination are the Multiple Local Call pattenddhe Multiple
Remote Call pattern [15, 17].

2. Select the nature of the communicating componeddsisidering that the
parallel hardware platform to be used has a distributed ngorganiza-
tion, the nature of the communicating components for sucmaomg orga-
nization is considered to be message passing or remote call.

3. Select the type of synchronization required for the comoation. Nor-
mally, the communication between software componentsaitizds a root
and two or more children makes use of a synchronous commtigncan
a synchronous communications, the root software comparadist to its
children and blocks, waiting for receiving a response frovam. Once
the response in received, this software component operatdse results
from its children, and acting as a child, provides a reswltist own root
software component.

4. Selection of a design pattern for communication compon€lussidering
(a) the use of the PL pattern, (b) the distributed memoryraegdion of the
parallel platform, and (c) the use of synchronous commuioics, there-
fore theMultiple Remote Call pattern is proposed here as the base for
designing the communications between root and childrehus.eonsider
the Context and Problem sections of this pattern [15, 17]:

— Context: ‘A parallel program is to be developed using the Parallel
Layers architectural pattern as a functional paralleligpraach

in which an algorithm is partitioned among autonomous psses
(layer components) that make up the processing compongttis o
parallel program. The parallel program is to be developedafo
distributed memory computer, but also can be used with seghar
memory computer. The programming language to be used has ren
dezvous or remote procedure calls as synchronization mesha

for remote process communication’.

— Problem: ‘A collection of distributed, parallel layer components
need to communicate by issuing multiple remote proceduis, ca
synchronously waiting to receive the multiple results ofs calls.
All data is contained in a distributed layer component anty on
disseminated to layer components below, or gathered arskgas
to layer components above’.

From both these descriptions, it is noticeable that for thep&tern, on
a distributed memory parallel platform, and using Java asptiogram-
ming language, the choice for developing the communicat@mmnponents
for this example is theviultiple Remote Call pattern. The use of a
distributed memory parallel platform implies using remotdls, and it
is known that the Java programming language counts with ldraents
for developing such calls. Moreover, this calls considelachronous
communication scheme between a ‘client’ and its ‘servelnergfore, this
completes the selection of the Design Pattern for Commtioic&ompo-
nents of the Hypercube Sorting. The design of the paralfeisoe system
continues using the Multiple Remote Call pattern’s Soluection as a
starting point for communication design and implementatio

e Structure and dynamics. This section takes information of the Multiple Remote
Call design pattern, expressing the interaction betweesattware components
that carry out the communication between parallel softveam@ponents for the
actual example.

1. Structure. The structure of this pattern applied for designing and im-
plementing remote call communication components for thep&itern is
shown in Figure 3 using a UML Collaboration Diagram [6]. Matithat
this component structure allows a synchronous, bidireatioommunica-
tion between a root component and a group of children. Therspmous
feature is achieved by using a barrier synchronization errdbt side, so
the root component does wait for all its children [15, 17].

2. Dynamics.This pattern actually performs a groups of remote callsiwith
the available distributed memory parallel platform. Feydr shows the
behavior of the participants of this pattern for the actxalneple.

In this scenario, a group of bi-directional, synchronousate calls is car-
ried out, as follows:

— The root component issues a remote procedure call through a r
mote procedure call component to the multithread servergiwh
executes on a different processor within the distributednorg
computer. Once this remote procedure call has been issued, t
root component blocks, waiting for a result.

root:Layer

ik
:RemoteProcedureCall
VY14
:MultiThreadServer
:ClientThread :ClientThread
Pl Pl
:RemoteProcedureCall :RemoteProcedureCall
1] [
childl:Layer child2:Layer

Figure 3. UML Collaboration Diagram of the Multiple Remote Call pattern used for synchronous
remote calls between root and two children of the PL solution to the Hypercube Sorting.

root:L@@r‘ E(# ‘:MuItiThreadServHClient:Threa#‘E(# ‘childl:Laye‘r ‘CIient:ThreaME# ‘chiIdZ:Laye‘r
| |

Jl T T T T
get Request ()
makeReguiest Vi t Repl y()
create()
create() doRequest ()
J doRequesit ()
get Reqtlesn'%a eRequest Wi t Repl
doRequest () get Reqiesn% eRequest Wi t Repl y
doRequest ()
~ | Repl
makeRepl y()
r Repl
mekeRep| y() "
Repl
Repl
% gat her Repl|i es()
Repl
mekeRepl y()
I I T T T N

Figure 4. UML Sequence Diagram for the Multiple Remote Call pattern applied for synchronous re-
mote calls between root and two children of the PL solution to the Hypercube Sorting.

The multithread server receives the remote call from theotem
procedure call component through the network and createsugpg
of client threads to distribute the call to child componexscuting
on other computers.

Once created, each client thread is passed part of the dhteaais-
mits it by issuing a remote procedure call through a new remot
procedure call component, one for each client thread. Reprot
cedure call components have been proposed and used as commu-
nication and synchronization mechanisms for distributesory
environments: here they are used to maintain the synchsdieau
ture of communications within the whole Parallel Layersisture,
distributed among several processors. Once every cabugdsto
remote processes, all the client threads wait until thegivecthe
results from the remote procedure call components.

Once each child component produces a result, it returnsatigh
the network to the remote procedure call component thatnalig
called it, and thus to its respective client thread.

Each client thread passes its result to the multithreadese@nce
results have been received from all client threads, theitintdad
server assembles them into a single result, which is pabsauaigh
the network via the remote procedure call component to thete
root component that originally issued the call.

3. Functional description of software componentshis section describes
each software component of the Multiple Remote Call patésrthe par-
ticipant of the communication sub-system, establishisigasponsibilities,
input, and output.

(@)

(b)

(©)

Multithread server. The responsibilities of the multithread server
component are to receive remote procedure calls and trsgiece
tive data, as arguments, from a higher-layer componentaihe
data and create a client thread for each data subset. Ther Heen
waits for all client threads to produce their results: oreeeived,
the multithread server assembles an overall result andhsetuto

the higher-layer component that originally called it.

Client thread. The responsibilities of each client thread, once cre-
ated, are to receive a local call from the multithread sewién

a subset of data to be operated on, and to generate a remete pro
cedure call to a single layer component on the layer belonceOn
the called procedure produces a result, the client threaadves it,
returning it to its multithread server.

Remote procedure call. The remote procedure call components
in this pattern have two main responsibilitie@) to serve as a
communication and synchronization mechanism, allowinigy&c-
tional synchronous communication between any two comgsnen
connects (which execute on different computers), @do serve

as a remote communication stage within the distributed nmgmo
organization between the components of adjacent layerqude
pling them so that communications between them are pertbrme

synchronously. Remote procedure calls are normally usedise
tributed memory environments.

4. Description of the communicatiofthe Multiple Remote Call pattern pro-
vides a bidirectional, one-to-many and many-to-one, rensotmmunica-
tion subsystem for Hypercube Sorting solution, based orPtheattern.
This subsystem has the form of a tree-like communicatiarctire. It de-
scribes a set of communication components that dissemieatete calls
to multiple communication components executing on difieprocessors
or computer systems. These communication components aatragjates
or proxies of the processing components, sorting localetsladi nt vari-
ables, and then, returning a sorted array. Hence, thisrpastesed to dis-
tribute a part of the whole set to be sorted to other procggamponents
in lower layers, executing on other memory systems. Botlinitleer- and
lower-layer components are allowed to execute simultasigodowever,
they must communicate synchronously during each remoteocai the
network of the distributed memory parallel system.

5. Communication AnalysisThis section describes the advantages and dis-
advantages of the Multiple Remote Call pattern as a basééocammu-
nication structure proposed.

(a) Advantages

— The Multiple Remote Call pattern preserves the precise or-
der of sorting operations, since it represents a singlesstag
within a cascade of synchronous remote procedure calls.
Hence the multithread server is able to continue only when
all the child components of a layer have completed their
operations.

— As only one multithread server is used to call and synchro-
nize several local client threads, corresponding to sévera
child components, one-to-many communication is main-
tained during the distribution of data and many-to-one when
retrieving results. This is useful from a reusability stand
point.

— As only synchronous calls are allowed, the integrity and
order of the sorted results are preserved.

— The implementation includes the use of remote procedure
calls as synchronization mechanisms. This simplifies their
implementation and use for the distributed memory parallel
platform available.

— All communications are synchronous.

(b) Liabilities

— The use of the Multiple Remote Call pattern may produce
long delays in communication between remote components
on different layers due to the use of remote calls through the
network between components. As every layer component
has to wait until all operations on the next lower layer are
carried out, communication through the entire distributed
hierarchical structure could be slowed due to the number

of component per layer and the volume of communication
between root and child components.

4. Implementation

In this section, all the software components describederCbmmunication Design step
are considered for their implementation using the Javarproging language. Here, it
is only presented the implementation of the communicatidns/stem, which intercon-

nects processing components that implement the actualuatign that is to be executed
in parallel [18]. So, the implementation is presented heraléveloping the multiple re-

mote calls as communication and synchronization compsné&lavertheless, this design
and implementation of the whole parallel software systemsgoeyond the actual pur-
poses of the present paper.

4.1. Synchronization Mechanism — Remote Procedure Calls

Based on the Java programming language, an interface forethete procedure call
that provides the basic functionalities of a synchron@atnechanism for the Multiple
Remote Call pattern is presented as follows:
i nterface RenoteProcedureCall {

public abstract Object nakeRequest Wit Repl y(Object n);

public abstract Object getRequest();
public abstract void makeReply();

The interfaceRenot ePr ocedur eCal | presents three abstract methods which
allow to produce the calls between distributed objects dllodva synchronous commu-
nication betweem oot andchi | d components. This interface is used in the following
implementation stage as the basic synchronization eleafiém remote call components.

The methods of the interfadgenot ePr ocedur eCal | are normally used in a
common ‘client-server’ way: the methothkeRequest Wai t Repl y() is used by any
‘client’ component to generate a remote procedure calhdhtblocks until it receives a
result. The methodet Request () is used by any ‘server’ to receive the remote proce-
dure call. Finally, the methoalakeRepl y() is used by the ‘server’ to communicate a
result to the client remotely, unblocking it.

4.2. Communication components

Using the interfac®enot ePr ocedur eCal | from the previous section, here it is used
as the synchronization mechanism component as describeet yultiple Remote Call
pattern, in order to be implemented within the clasyer . In the current example, the
any layer component, acting as a root (or client), perfoiraget hod get Request (),
directed to the remote multithread server through the sf@eremote procedure call
component, as follows:

cl ass Layer inplenents Runnable {

private RenoteProcedureCall rpc; // reference to rpc

private hject data; // Data to be processed
private bject result; // Result fromthe cal

public void run(){
rpc = new Renot eProcedureCal | (socket s);
whil e(true){

result = rpc. get Request (data);

Notice that theRenot ePr ocedur eCal | component has aocket as argu-
ment. This means that this component makes use of the netaadry out its opera-
tion, translating the call into a synchronous remote cath®Mul t i t hr eadSer ver
through the methodekeRequest Wi t Repl y() . TheMul tit hr eadSer ver that
receives this remote call is shown as follows:

class MultithreadServer inplenments Runnable {

private RenoteProcedureCall rpc; // reference to rpc
private int data[]; // Data to be processed

private int subData[]; Data to be distributed

private int reply[]; // Results fromclient threads
private int result[]; // Overall result

private CientThread clientThread[];

private int nunCients;

private Bool ean request = false; // is there a request?

/1 Function called by the rpc
private void performRequest(int d[]){
data = d;
synchroni zed(t hi s){
request = true
this.notify();

}

public void run(){
//Wait until someone make a request
whil e(true)(
synchroni zed(this){
whi | e(!request) {
try{wait();}
catch(I nterruptedException e){}
}
}
/! Create childthreads
for(int i=0;i<nunmCients;i++)({
subdat a = get Next SubDat a(data, i);
clientThread[i] = new CientThread(subData);
}
//Wait for all child term nation
for(int i=0;i<nunCients;i++){
reply[i] = clientThread[i].returnResult();

try{
clientThread[i].]join();
}

catch(l nterruptedException e){}
}

result = gatherReplies();
rpc. makeRepl y(result);

TheMul tit hr eadSer ver isin charge of creating several n€vi ent Thr eads.
These handle that part of thent data to be processed by each call: after creating
all of them, theMul ti t hr eadSer ver waits until all the results are received. The
Mul tit hreadServer then gathers all results and sends them back to the root com-
ponent through the remote procedure call component, wheelpk the root component
waiting until it receives the results.

Now, the code for th€l i ent Thr ead is shown as follows.

class CientThread extends Thread{

private RenoteProcedureCall rpc; //reference to rpc
private int data[]; //Data to be processed
private int result[]; //Result fromthe cal
private Bool ean isResult = false; //1s there result

public CdientThread(int data){
this.data = data
this.start();

}

public void run(){
synchroni zed(resul t){
result = doRequest();
isResult = true;
result.notify();

}
private []int doRequest ()
rpc = new Renot eProcedureCal | (socket);

return rpc. get Request (data);

}

public Object returnResult(){
synchroni zed(resul t){
while(!isResult){
try{wait();} //Wait for result becone avail able
catch(I nterruptedException e){}
}
}

return result[];

EachCl i ent Thr ead acts as a single server for the child components in the
layer below, this is, the components in one layer are thert$' for the lower layers, and

at the same time the ‘servers’ for the higher layers. Notie¢ the code of the respective
Renot ePr ocedur eCal | component again makes use@cket , allowing it to make
use of the network to communicate with the child layer congms.

EachCl i ent Thr ead starts working when created, performing tteRequest ()
method and receiving thent data it should send to its respective child layer components
Thed i ent Thr ead does this through Renot ePr ocedur eCal | component. Once
itreceivesa esul t ,theC i ent Thr ead sendsitbacktothiul tit hr eadSer ver,
which assembles the overakksul t and replies to the root layer component through the
Renot ePr ocedur eCal | that originally issued the whole call.

5. Summary

The Design Patterns for Communication Components areeapipére along with a method
for selecting them, in order to show how to cope with the regjuents of communica-
tion present in the Hypercube Sorting problem. The mainative of this paper is to
demonstrate, with a particular example, the detailed desigl implementation that may
be guided by a selected design pattern. Moreover, the apiplicof the Design Patterns
for Communication Components and the method for selectiegtis proposed to be
used during the Communication Design and Implementatiootioer similar problems
that involve the distribution of data between identicalqassing components executing
on a distributed memory parallel platform.

6. Ackowledgements

This work is part of an ongoing research in the Departmenfda®ematicas. Facultad de
Ciencias, UNAM, funded by project IN109010-2, PAPIIT-DGARINAM, 2010.

References

[1] G.R. AndrewsFoundation of Multithreaded, Parallel and Distributed By@mming,
Addison-Wesley Longman, Inc., 2000.

[2] Brinch-Hansen, PStructured Multiprogramming. Communications of the ACM, \ol.
15, No. 17. July, 1972.

[3] Brinch-Hansen, PThe Programming Language Concurrent PascalEEE Transactions
on Software Engineering, Vol. 1, No. 2. June, 1975.

[4] P. Brinch-Hansemistributed Processes: A Concurrent Programming CongeptCom-
munications of the ACM, Vol.21, No. 11, 1978.

[5] E.W. Dijkstra Co-operating Sequential Processes In Programming Languages (ed.
Genuys), pp.43-112, Academic Press, 1968.

[6] Fowler, M.,UML Distilled. Addison-Wesley Longman Inc., 1997.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John iMkss Design Patterns: Ele-
ments of Reusable Object-Oriented Systems. Addison-Wd&ading, MA, 1994.

[8] S. HartleyConcurrent Programming. The Java Programming LanguageOxford Uni-
versity Press Inc., 1998.

[9] Hoare, C.A.R.,Towards a theory of parallel programming. Operating System Tech-
niques, Academic Press, 1972.

[10] Hoare, C.A.R.Monitors: An Operating System Structuring Conce@ommunications
of the ACM, Vol. 17, No. 10. October, 1974.

[11] C.A.R. HoareCommunicating Sequential ProcessesCommunications of the ACM,
Vol.21, No. 8, August 1978.

[12] S. Kleiman, D. Shah, and B. Smaaldé®gramming with Threads3rd ed. SunSoft
Press, 1996.

[13] J.L. Ortega-Arjona and G.R. Robe#schitectural Patterns for Parallel Programming
Proceedings of the 3rd European Conference on Pattern bgegwf Programming
and Computing (EuroPLoP98), Kloster Irsee, Germany, 1998.

[14] J.L. Ortega-Arjond he Parallel Layers Pattern. A Functional Parallelism Aitelctural
Pattern for Parallel Programming. 6th Latin American Conference on Pattern
Languages of Programming (SugarLoafPLoP 2007), Porto tlelaa, Pernambuco,
Brasil. 25-31 May, 2007.

[15] J.L. Ortega-Arjondesign Patterns for Communication Componentsroceedings of
the 12th European Conference on Pattern Languages of Brogng and Computing
(EuroPL0oP2007), Kloster Irsee, Germany, 2007.

[16] J.L. Ortega-ArjonaArchitectural Patterns for Parallel Programming. Modets Perfor-
mance Estimation VDM Verlag, 2009.

[17] J.L. Ortega-Arjondatterns for Parallel Software Design John Wiley & Sons, 2010.

[18] J.L. Ortega-Arjon@pplying Architectural Patterns for Parallel Programmingn Hy-
percube Sorting Submitted to the 15th European Conference on Pattern leayagu
of Programming and Computing (EuroPLoP2010), Klosterdr§&ermany, 2010.

[19] Shalloway, A., and Trott, J.RDesign Patterns Explained: A New Perspective on Object-
Oriented Design. Software Pattern Series. Addison-Wesley, 2002.

