
Applying Design Patterns for Communication Components
Communicating Parallel Layer components for an Hypercube

Sorting

Jorge L. Ortega Arjona

1Departamento de Matemáticas Facultad de Ciencias, UNAM
jloa@fciencias.unam.mx

Abstract. This paper presents the design and implementation of the communi-
cation components for a parallel version of the Hypercube Sorting. The method
used here makes use of Design Patterns for Communication Components, which
take information from the Problem Analysis and Coordination Design, and pro-
vide elements about its implementation.

1. Introduction

Parallel programming is characterized by a growing set of parallel hardware architectures,
programming paradigms, and parallel languages. This situation makes difficult to propose
just a single approach containing all the details to design and implement communication
components for all parallel software systems. Hence, the Design Patterns for Communi-
cation Components [15, 17] are proposed as an effort to help aprogrammer to design the
communication components depending on particular characteristics and features of the
communication to be carried out between the processing components, when designing a
parallel program.

The Design Patterns for Communication Components focus on describing and re-
fining the communication components of a parallel program, by describing common pro-
gramming structures used for communicating, exchanging data or requesting operations,
between processing components. Their application directly depends on the Architectural
Pattern for Parallel Programming [13, 16, 17] which they arepart of, detailing a commu-
nication and synchronization function as a local problem, and providing a form as a local
solution of software components for such a communication problem.

When designing the communication components of a parallel program, it is impor-
tant to think carefully how communication and synchronization are to be actually carried
out by those communication components.

However, design patterns for communication are not appliedin isolation. A par-
allel program is the result of applying several patterns at different levels of design and
implementation. The design and implementation of a whole parallel program requires
applying more than a single pattern. Different patterns areapplied at different levels of
design. Designing and programming a parallel software system requires, then, several
patterns at least at three levels of design: coordination, communication, and synchro-
nization. Several different patterns have been proposed for each one of these levels: ar-
chitectural patterns for coordination, design patterns for communication, and idioms for



synchronization [17]. The present paper preciselly focuses on the second level of design:
communication design.

In this paper, it is presented the application of the multiple remote call pattern for
designing the communication components of a parallel program that solves the Hyper-
cube Sorting. For this problem, the paper“Applying Architectural Patterns for Parallel
Programming. An Hypercube Sorting”[18] has already presented the Communicating
Sequential Elements pattern for designing the coordination level of the whole parallel
program. Here, this paper continues and complements the design of the whole parallel
program, by applying the multiple remote call design pattern for continuing the design of
the whole parallel program that solves the Hypercube Sorting. The design development
here is part of the method for designing parallel programs aspresented in the book“Pat-
tern for Parallel Software Design[17]. However, in this paper, only the Communication
Design is specifically performed to solve the communicationrequirements of the Hyper-
cube Sorting, making use of Design Patterns for Communication Components [15, 17],
taking information from the architectural decisions in [18], and providing elements about
the design and implementation of communication componentsfor the Hypercube Sorting.

2. The Parallel Layers pattern: the Hypercube Sorting case
In the paper“Applying Architectural Patterns for Parallel Programming. An Hypercube
Sorting” [18], the Parallel Layers Architectural Pattern has been selected as a viable so-
lution for an Hypercube Sorting. Now, in order to apply the Design Patterns for Commu-
nication Components for developing the communication components for this example,
some information related with the Parallel Layers pattern and the parallel platform and
programming language is required. This information is summarized as follows.

2.1. The Parallel Layers pattern

• Description of the coordination. The Parallel Layers pattern makes use of func-
tional parallelism to execute sub-algorithms, allowing the simultaneous existence
and execution of more than one instance of a layer component through time. Each
of these instances are composed of the simplest sub-algorithms. In a layered sys-
tem, an operation involves the execution of operations in several layers. These
operations are triggered by a call, and data is vertically shared among layers in
the form of arguments for these function calls. During the execution of opera-
tions in each layer, usually the higher layers have to wait for a result from lower
layers. However, if each layer is represented by more than one component, they
can be executed in parallel and service new requests. Therefore, at the same time,
several ordered sets of operations are carried out by the same system. Several
computations can be overlapped in time [14, 18, 17].

• Structure and dynamics
1. Structure. When applying the PL pattern for the Hypercube Sorting, the

set to be sorted is divided over and over until a simple operation can be car-
ried out simultaneously to obtain a partial sorting. Once this is achieved,
the sorted result is sent back to the component above, and thesorting is
performed again, over and over, until reaching the root component of the
whole structure. Hence, the structure of the actual solution involves a tree-
like logical structure. Thus, the solution is presented as atree of processing



P0:Layer P4:Layer P2:Layer P6:Layer P1:Layer P5:Layer P3:Layer P7:Layer

P0:Layer

P0:Layer P1:Layer

P0:Layer P2:Layer P1:Layer P3:Layer

Figure 1. Object Diagram of PL for solving the Hypercube Sorting.

layer components. These are identical components that simultaneously ex-
ist and process during the execution time. An Object Diagram, represent-
ing this structure is shown in Figure 3 [18, 17].

2. Dynamics. A scenario to describe a basic run-time behavior of the PL
pattern for solving the Hypercube Sorting is described as follows. Notice
that all layer components, as basic processing software components, are
active at the same time. Every layer component performs the same divi-
sion, and once the set is completely divided, the layer component sorts
its subset, providing its result to the layer component above. This opera-
tion is repeated until the whole set is sorted and made available to the root
component of the tree structure as shown in Figure 4 [18, 17].

P0:Layer P1:Layer P2:Layer P3:Layer P4:Layer P5:Layer P6:Layer P7:Layer

n
n/2

n/2

n/4 n/4

n/4 n/4

n/8 n/8 n/8 n/8
n/8 n/8 n/8 n/8

Sort(n/8)Sort(n/8)Sort(n/8) Sort(n/8) Sort(n/8)

n/8n/8n/8n/8

Sort(n/4) Sort(n/4)Sort(n/4)

n/4n/4

Sort(n/2) Sort(n/2)

n/2

Sort(n)

n

Sort(n/8)

Sort(n/4)

Sort(n/8) Sort(n/8)

Figure 2. Sequence Diagram of PL for Hypercube Sorting.



2.2. Information about parallel platform and programming l anguage

Information about parallel platform and programming language. The parallel platform
available for this parallel program is a cluster of computers, specifically, a dual-core server
(Intel dual Xeon processors, 1 Gigabyte RAM, 80 Gigabytes HDD) 16 nodes (each with
Intel Pentium IV processors, 512 Megabytes RAM, 40 Gigabytes HDD), which commu-
nicate through an Ethernet network. The parallel application for this platform is pro-
grammed using the Java programming language [18].

3. Communication Design

3.1. Specification of Communication Components

• The scope.This section takes into consideration the basic information about the
parallel hardware platform and the programming language used, as well as the
PL pattern as the selected coordination for solving the Hypercube Sorting. The
objective is to look for the relevant information for choosing a particular design
pattern as a communication structure.

Based on the information about the parallel platform (a distributed memory clus-
ter), the programming language (Java) and the description of software components
for the PL pattern presented in the previous section, the procedure for selecting a
Design Pattern for the Communication Components for the Hypercube Sorting is
presented as follows [15, 17]:

1. Consider the architectural pattern selected in the previous step.From the
PL pattern description, the design patterns which provide communication
components and allow the behavior as described by this architectural pat-
tern for a coordination are the Multiple Local Call pattern and the Multiple
Remote Call pattern [15, 17].

2. Select the nature of the communicating components.Considering that the
parallel hardware platform to be used has a distributed memory organiza-
tion, the nature of the communicating components for such memory orga-
nization is considered to be message passing or remote call.

3. Select the type of synchronization required for the communication. Nor-
mally, the communication between software components thatact as a root
and two or more children makes use of a synchronous communication. In
a synchronous communications, the root software componentcalls to its
children and blocks, waiting for receiving a response from them. Once
the response in received, this software component operateson the results
from its children, and acting as a child, provides a results to its own root
software component.

4. Selection of a design pattern for communication components. Considering
(a) the use of the PL pattern, (b) the distributed memory organization of the
parallel platform, and (c) the use of synchronous communications, there-
fore theMultiple Remote Call pattern is proposed here as the base for
designing the communications between root and children. Let us consider
the Context and Problem sections of this pattern [15, 17]:

– Context: ‘A parallel program is to be developed using the Parallel
Layers architectural pattern as a functional parallelism approach



in which an algorithm is partitioned among autonomous processes
(layer components) that make up the processing components of the
parallel program. The parallel program is to be developed for a
distributed memory computer, but also can be used with a shared
memory computer. The programming language to be used has ren-
dezvous or remote procedure calls as synchronization mechanisms
for remote process communication’.

– Problem: ‘A collection of distributed, parallel layer components
need to communicate by issuing multiple remote procedure calls,
synchronously waiting to receive the multiple results of those calls.
All data is contained in a distributed layer component and only
disseminated to layer components below, or gathered and passed
to layer components above’.

From both these descriptions, it is noticeable that for the PL pattern, on
a distributed memory parallel platform, and using Java as the program-
ming language, the choice for developing the communicationcomponents
for this example is theMultiple Remote Call pattern . The use of a
distributed memory parallel platform implies using remotecalls, and it
is known that the Java programming language counts with the elements
for developing such calls. Moreover, this calls consider a synchronous
communication scheme between a ‘client’ and its ‘server’. Therefore, this
completes the selection of the Design Pattern for Communication Compo-
nents of the Hypercube Sorting. The design of the parallel software system
continues using the Multiple Remote Call pattern’s Solution section as a
starting point for communication design and implementation.

• Structure and dynamics.This section takes information of the Multiple Remote
Call design pattern, expressing the interaction between its software components
that carry out the communication between parallel softwarecomponents for the
actual example.

1. Structure. The structure of this pattern applied for designing and im-
plementing remote call communication components for the PLpattern is
shown in Figure 3 using a UML Collaboration Diagram [6]. Notice that
this component structure allows a synchronous, bidirectional communica-
tion between a root component and a group of children. The synchronous
feature is achieved by using a barrier synchronization on the root side, so
the root component does wait for all its children [15, 17].

2. Dynamics.This pattern actually performs a groups of remote calls within
the available distributed memory parallel platform. Figure 4 shows the
behavior of the participants of this pattern for the actual example.
In this scenario, a group of bi-directional, synchronous remote calls is car-
ried out, as follows:

– The root component issues a remote procedure call through a re-
mote procedure call component to the multithread server, which
executes on a different processor within the distributed memory
computer. Once this remote procedure call has been issued, the
root component blocks, waiting for a result.



root:Layer

:MultiThreadServer

:RemoteProcedureCall

:ClientThread

child1:Layer

:ClientThread

child2:Layer

:RemoteProcedureCall :RemoteProcedureCall

Network

Figure 3. UML Collaboration Diagram of the Multiple Remote Call pattern used for synchronous
remote calls between root and two children of the PL solution to the Hypercube Sorting.

root:Layer :RPC :MultiThreadServerClient:Thread :RPC child1:Layer Client:Thread :RPC child2:Layer

getRequest()
makeRequestWaitReply()

create()

create() doRequest()

doRequest()getRequest()

getRequest()
makeRequestWaitReply()

makeRequestWaitReply()doRequest()

doRequest()

Reply

Reply
makeReply()

makeReply()

Reply

Reply

gatherReplies()

Reply
makeReply()

NETWORK

Figure 4. UML Sequence Diagram for the Multiple Remote Call pattern applied for synchronous re-
mote calls between root and two children of the PL solution to the Hypercube Sorting.



– The multithread server receives the remote call from the remote
procedure call component through the network and creates a group
of client threads to distribute the call to child componentsexecuting
on other computers.

– Once created, each client thread is passed part of the data and trans-
mits it by issuing a remote procedure call through a new remote
procedure call component, one for each client thread. Remote pro-
cedure call components have been proposed and used as commu-
nication and synchronization mechanisms for distributed memory
environments: here they are used to maintain the synchronous fea-
ture of communications within the whole Parallel Layers structure,
distributed among several processors. Once every call is issued to
remote processes, all the client threads wait until they receive the
results from the remote procedure call components.

– Once each child component produces a result, it returns it through
the network to the remote procedure call component that originally
called it, and thus to its respective client thread.

– Each client thread passes its result to the multithread server. Once
results have been received from all client threads, the multithread
server assembles them into a single result, which is passed through
the network via the remote procedure call component to the remote
root component that originally issued the call.

3. Functional description of software components.This section describes
each software component of the Multiple Remote Call patternas the par-
ticipant of the communication sub-system, establishing its responsibilities,
input, and output.

(a) Multithread server. The responsibilities of the multithread server
component are to receive remote procedure calls and their respec-
tive data, as arguments, from a higher-layer component, divide the
data and create a client thread for each data subset. The server then
waits for all client threads to produce their results: once received,
the multithread server assembles an overall result and returns it to
the higher-layer component that originally called it.

(b) Client thread. The responsibilities of each client thread, once cre-
ated, are to receive a local call from the multithread serverwith
a subset of data to be operated on, and to generate a remote pro-
cedure call to a single layer component on the layer below. Once
the called procedure produces a result, the client thread retrieves it,
returning it to its multithread server.

(c) Remote procedure call. The remote procedure call components
in this pattern have two main responsibilities:(a) to serve as a
communication and synchronization mechanism, allowing bidirec-
tional synchronous communication between any two components it
connects (which execute on different computers), and(b) to serve
as a remote communication stage within the distributed memory
organization between the components of adjacent layers, decou-
pling them so that communications between them are performed



synchronously. Remote procedure calls are normally used for dis-
tributed memory environments.

4. Description of the communication.The Multiple Remote Call pattern pro-
vides a bidirectional, one-to-many and many-to-one, remote communica-
tion subsystem for Hypercube Sorting solution, based on thePL pattern.
This subsystem has the form of a tree-like communication structure. It de-
scribes a set of communication components that disseminateremote calls
to multiple communication components executing on different processors
or computer systems. These communication components act assurrogates
or proxies of the processing components, sorting local subsets ofint vari-
ables, and then, returning a sorted array. Hence, this pattern is used to dis-
tribute a part of the whole set to be sorted to other processing components
in lower layers, executing on other memory systems. Both thehigher- and
lower-layer components are allowed to execute simultaneously. However,
they must communicate synchronously during each remote call over the
network of the distributed memory parallel system.

5. Communication Analysis.This section describes the advantages and dis-
advantages of the Multiple Remote Call pattern as a base for the commu-
nication structure proposed.

(a) Advantages
– The Multiple Remote Call pattern preserves the precise or-

der of sorting operations, since it represents a single stage
within a cascade of synchronous remote procedure calls.
Hence the multithread server is able to continue only when
all the child components of a layer have completed their
operations.

– As only one multithread server is used to call and synchro-
nize several local client threads, corresponding to several
child components, one-to-many communication is main-
tained during the distribution of data and many-to-one when
retrieving results. This is useful from a reusability stand-
point.

– As only synchronous calls are allowed, the integrity and
order of the sorted results are preserved.

– The implementation includes the use of remote procedure
calls as synchronization mechanisms. This simplifies their
implementation and use for the distributed memory parallel
platform available.

– All communications are synchronous.
(b) Liabilities

– The use of the Multiple Remote Call pattern may produce
long delays in communication between remote components
on different layers due to the use of remote calls through the
network between components. As every layer component
has to wait until all operations on the next lower layer are
carried out, communication through the entire distributed
hierarchical structure could be slowed due to the number



of component per layer and the volume of communication
between root and child components.

4. Implementation

In this section, all the software components described in the Communication Design step
are considered for their implementation using the Java programming language. Here, it
is only presented the implementation of the communication sub-system, which intercon-
nects processing components that implement the actual computation that is to be executed
in parallel [18]. So, the implementation is presented here for developing the multiple re-
mote calls as communication and synchronization components. Nevertheless, this design
and implementation of the whole parallel software system goes beyond the actual pur-
poses of the present paper.

4.1. Synchronization Mechanism – Remote Procedure Calls

Based on the Java programming language, an interface for theremote procedure call
that provides the basic functionalities of a synchronization mechanism for the Multiple
Remote Call pattern is presented as follows:

interface RemoteProcedureCall {
public abstract Object makeRequestWaitReply(Object m);
public abstract Object getRequest();
public abstract void makeReply();

}

The interfaceRemoteProcedureCall presents three abstract methods which
allow to produce the calls between distributed objects and allow a synchronous commu-
nication betweenroot andchild components. This interface is used in the following
implementation stage as the basic synchronization elementof the remote call components.

The methods of the interfaceRemoteProcedureCall are normally used in a
common ‘client-server’ way: the methodmakeRequestWaitReply() is used by any
‘client’ component to generate a remote procedure call. It then blocks until it receives a
result. The methodgetRequest() is used by any ‘server’ to receive the remote proce-
dure call. Finally, the methodmakeReply() is used by the ‘server’ to communicate a
result to the client remotely, unblocking it.

4.2. Communication components

Using the interfaceRemoteProcedureCall from the previous section, here it is used
as the synchronization mechanism component as described bythe Multiple Remote Call
pattern, in order to be implemented within the classLayer. In the current example, the
any layer component, acting as a root (or client), performs themethod getRequest(),
directed to the remote multithread server through the respective remote procedure call
component, as follows:

class Layer implements Runnable {
...
private RemoteProcedureCall rpc; // reference to rpc



private Object data; // Data to be processed
private Object result; // Result from the call
...
public void run(){

...
rpc = new RemoteProcedureCall(socket s);
...
while(true){

...
result = rpc.getRequest(data);
...

}
}

}

Notice that theRemoteProcedureCall component has asocket as argu-
ment. This means that this component makes use of the networkto carry out its opera-
tion, translating the call into a synchronous remote call totheMultithreadServer
through the methodmakeRequestWaitReply(). TheMultithreadServer that
receives this remote call is shown as follows:
class MultithreadServer implements Runnable {

...
private RemoteProcedureCall rpc; // reference to rpc
private int data[]; // Data to be processed
private int subData[]; Data to be distributed
private int reply[]; // Results from client threads
private int result[]; // Overall result
private ClientThread clientThread[];
private int numClients;
private Boolean request = false; // is there a request?
...
//Function called by the rpc
private void performRequest(int d[]){

data = d;
synchronized(this){

request = true;
this.notify();

}
}
...
public void run(){

//Wait until someone make a request
while(true){

synchronized(this){
while(!request){

try{wait();}
catch(InterruptedException e){}

}
}
//Create childthreads
for(int i=0;i<numClients;i++){

subdata = getNextSubData(data,i);
clientThread[i] = new ClientThread(subData);

}
//Wait for all child termination
for(int i=0;i<numClients;i++){

reply[i] = clientThread[i].returnResult();
try{

clientThread[i].join();
}



catch(InterruptedException e){}
}
result = gatherReplies();
rpc.makeReply(result);

}
}
...

}

TheMultithreadServer is in charge of creating several newClientThreads.
These handle that part of theint data to be processed by each call: after creating
all of them, theMultithreadServer waits until all the results are received. The
MultithreadServer then gathers all results and sends them back to the root com-
ponent through the remote procedure call component, which keeps the root component
waiting until it receives the results.

Now, the code for theClientThread is shown as follows.

class ClientThread extends Thread{
...
private RemoteProcedureCall rpc; //reference to rpc
private int data[]; //Data to be processed
private int result[]; //Result from the call
private Boolean isResult = false; //Is there result
...
public ClientThread(int data){

this.data = data;
this.start();

}
...
public void run(){

synchronized(result){
result = doRequest();
isResult = true;
result.notify();

}
...

}
...
private []int doRequest(){

...
rpc = new RemoteProcedureCall(socket);
...
return rpc.getRequest(data);

}
...
public Object returnResult(){

synchronized(result){
while(!isResult){

try{wait();} //Wait for result become available
catch(InterruptedException e){}

}
}
return result[];

}
}

EachClientThread acts as a single server for the child components in the
layer below, this is, the components in one layer are the ‘clients’ for the lower layers, and



at the same time the ‘servers’ for the higher layers. Notice that the code of the respective
RemoteProcedureCall component again makes use asocket, allowing it to make
use of the network to communicate with the child layer components.

EachClientThread starts working when created, performing thedoRequest()
method and receiving theint data it should send to its respective child layer components.
TheClientThread does this through aRemoteProcedureCall component. Once
it receives aresult, theClientThread sends it back to theMultithreadServer,
which assembles the overallresult and replies to the root layer component through the
RemoteProcedureCall that originally issued the whole call.

5. Summary

The Design Patterns for Communication Components are applied here along with a method
for selecting them, in order to show how to cope with the requirements of communica-
tion present in the Hypercube Sorting problem. The main objective of this paper is to
demonstrate, with a particular example, the detailed design and implementation that may
be guided by a selected design pattern. Moreover, the application of the Design Patterns
for Communication Components and the method for selecting them is proposed to be
used during the Communication Design and Implementation for other similar problems
that involve the distribution of data between identical processing components executing
on a distributed memory parallel platform.

6. Ackowledgements

This work is part of an ongoing research in the Departmento deMatemáticas. Facultad de
Ciencias, UNAM, funded by project IN109010-2, PAPIIT-DGAPA-UNAM, 2010.

References

[1] G.R. AndrewsFoundation of Multithreaded, Parallel and Distributed Programming.,
Addison-Wesley Longman, Inc., 2000.

[2] Brinch-Hansen, P.,Structured Multiprogramming. Communications of the ACM, Vol.
15, No. 17. July, 1972.

[3] Brinch-Hansen, P.,The Programming Language Concurrent Pascal.IEEE Transactions
on Software Engineering, Vol. 1, No. 2. June, 1975.

[4] P. Brinch-HansenDistributed Processes: A Concurrent Programming Concept., Com-
munications of the ACM, Vol.21, No. 11, 1978.

[5] E.W. Dijkstra Co-operating Sequential Processes, In Programming Languages (ed.
Genuys), pp.43-112, Academic Press, 1968.

[6] Fowler, M.,UML Distilled. Addison-Wesley Longman Inc., 1997.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Systems. Addison-Wesley, Reading, MA, 1994.

[8] S. HartleyConcurrent Programming. The Java Programming Language., Oxford Uni-
versity Press Inc., 1998.



[9] Hoare, C.A.R.,Towards a theory of parallel programming. Operating System Tech-
niques, Academic Press, 1972.

[10] Hoare, C.A.R.,Monitors: An Operating System Structuring Concept.Communications
of the ACM, Vol. 17, No. 10. October, 1974.

[11] C.A.R. HoareCommunicating Sequential Processes.Communications of the ACM,
Vol.21, No. 8, August 1978.

[12] S. Kleiman, D. Shah, and B. SmaaldersProgramming with Threads, 3rd ed. SunSoft
Press, 1996.

[13] J.L. Ortega-Arjona and G.R. RobertsArchitectural Patterns for Parallel Programming,
Proceedings of the 3rd European Conference on Pattern Languages of Programming
and Computing (EuroPLoP98), Kloster Irsee, Germany, 1998.

[14] J.L. Ortega-ArjonaThe Parallel Layers Pattern. A Functional Parallelism Architectural
Pattern for Parallel Programming., 6th Latin American Conference on Pattern
Languages of Programming (SugarLoafPLoP 2007), Porto de Galinhas, Pernambuco,
Brasil. 25-31 May, 2007.

[15] J.L. Ortega-ArjonaDesign Patterns for Communication Components, Proceedings of
the 12th European Conference on Pattern Languages of Programming and Computing
(EuroPLoP2007), Kloster Irsee, Germany, 2007.

[16] J.L. Ortega-ArjonaArchitectural Patterns for Parallel Programming. Models for Perfor-
mance Estimation, VDM Verlag, 2009.

[17] J.L. Ortega-ArjonaPatterns for Parallel Software Design, John Wiley & Sons, 2010.

[18] J.L. Ortega-ArjonaApplying Architectural Patterns for Parallel Programming. An Hy-
percube Sorting, Submitted to the 15th European Conference on Pattern Languages
of Programming and Computing (EuroPLoP2010), Kloster Irsee, Germany, 2010.

[19] Shalloway, A., and Trott, J.R.,Design Patterns Explained: A New Perspective on Object-
Oriented Design. Software Pattern Series. Addison-Wesley, 2002.


