
Applying Design Patterns for

Communication Components

Communicating CSE components for the

One-dimensional Heat Equation

Jorge L. Ortega Arjona

Departamento de Matemáticas

Facultad de Ciencias, UNAM.

jloa@ciencias.unam.mx

Abstract

The design patterns for communication components is a collection of

patterns related with a method for developing the communication sub-

systems of parallel software systems. These design patterns are applied

depending on (a) the architectural pattern of the overall parallel software

system, (b) the memory organization of the parallel hardware platform,

and (c) the type of synchronization required.

In this paper, it is presented the application of the design patterns

along with the method for communicating the Communicating Sequen-

tial Elements components of the One-dimensional Heat Equation. The

method used here takes the information from the problem analysis and

coordination design, applies a design pattern for the communication com-

ponents, and provides elements about its implementation.

This paper is aimed at those interested in the design of parallel soft-

ware and require a base to understand it, with a background in parallel

programming and software patterns, particularly the Patterns for Paral-
lel Software Design. The information provided in this paper attempts to

guide developers and programmers during the communication design and

implementation using design patterns for communication components.

1 Introduction

Parallel programming is characterized by a growing set of parallel hardware
architectures, programming paradigms, and parallel languages. This situation
makes it difficult to propose just a single approach containing all the details
to design and implement communication components for all parallel software
systems. Hence, the design patterns for communication components [15, 17]
are presented as an effort to help a programmer to design the communication
components depending on particular characteristics and features of the commu-
nication to be carried out between the processing components, when designing
a parallel program.

A2 - 1



The design patterns for communication components focus on describing and
refining the communication components of a parallel program, by describing
common programming structures used for communicating, exchanging data or
requesting operations, between processing components. Their application di-
rectly depends on the architectural pattern for parallel programming [13, 17],
detailing a communication and synchronization function as a local problem, and
providing a form as a local solution of software components for such a commu-
nication problem.

When designing the communication components of a parallel program, it
is important to think carefully how communication and synchronization are to
be actually carried out by those communication components. From the many
descriptions about how to organize the communication components of a parallel
program [12, 8, 1] the design patterns for communication components [15, 17]
have the following advantages:

• The design patterns for communication components describe some com-
mon structures used to refine and to detail the communications and syn-
chronization required by an architectural pattern for parallel programming
[13, 17]. From this point of view, their objective is to help the software
designer or programmer by providing medium-scale descriptions of soft-
ware compounds that are used to communicate between parallel process-
ing components. There has been an extensive research and development of
such software compounds [12, 8, 1], but unfortunately, normally they have
not been related or linked with overall structures of parallel programs.

• The design patterns for communication components are descriptions about
how to relate a communication function (in run-time terms) with a coded
form (in compile-time terms). In many parallel applications, communica-
tion components are designed so their run-time communication function
is organized having little resemblance to the compile-time organization of
code that performs it. In fact, both organizations are by far very indepen-
dent from each other, making it difficult to notice how communication is
performed by coded components. The design patterns for communication
components attempt to connect both descriptions into a single description
that provides both, dynamic and static information about those commu-
nication components.

• The design patterns for communication components describe software sub-
systems or sub-structures for data exchange and/or function call. As such,
they are a guidance about how to find the set of software component that
perform communication and synchronization between processing compo-
nents. The communication between processing components of a parallel
software system is a key for the success or failure of such a parallel soft-
ware system. Hence, the design patterns for communication components
are developed and classified based on (a) the architectural pattern used
for the overall parallel software system, (b) the memory organization of
the parallel hardware platform, and (c) the type of synchronization in the
parallel programming language available. These three features strongly
affect the design and implementation of communication software compo-
nents. Thus, the design patterns for communication components describe

A2 - 2



and document several generic and different software structures for commu-
nication components, referring to different kinds of architectural patterns
(Parallel Pipes and Filters, Parallel Layers, Communicating Sequential
Elements, Manager-Workers, and Shared Resource) [13, 17], the hardware
platform memory organization (shared memory or distributed memory),
and the different types of synchronization available is common program-
ming languages (synchronous or asynchronous).

• Normally, the design patterns for communication components are de-
scribed so their components are explained in object-oriented terms. This
does not prevent that they can be developed using other different paradigms
and programming languages (such as process- or task- oriented). Never-
theless, such a description allows to take into consideration and advantage
object-oriented principles, such as the separation between interfaces and
implementation, reuse, and modifiability of code [7, 18].

• The design patterns for communication components introduce communi-
cation structures as forms in which software components are assembled or
arranged together in order to perform communication. The communica-
tion structures are represented by forms as regular organizations of soft-
ware components, aiming to allow software designers to understand com-
plex communication software sub-systems, and therefore, reducing their
cognitive burden.

• The design patterns for communication components are based on the com-
mon concepts and terms originally used for inter-process communication
[5, 9, 2, 10, 3, 11, 4]. As such, these design patterns make use and provide
elements to develop a terminology for designing communication compo-
nents for parallel programs.

The following table presents a brief summary of the design patterns for
communication components, and their main classification features [15, 17].

Design Pattern Type of Memory Type of

Parallelism Organization Synchronization

Shared Variable Pipe Functional Shared Memory Asynchronous

Multiple Local Call Functional Shared Memory Synchronous

Message Passing Pipe Functional Distributed Memory Asynchronous

Multiple Remote Call Functional Distributed Memory Synchronous

Shared Variable Channel Domain Shared Memory Asynchronous

Message Passing Channel Domain Distributed Memory Asynchronous

Local Rendezvous Activity Shared Memory Synchronous

Remote Rendezvous Activity Distributed Memory Synchronous

2 Specification of the System

In the paper “Applying Architectural Patterns for Parallel Programming. Solv-
ing the One-dimensional Heat Equation” [16], the Communicating Sequential
Elements architectural pattern has been selected as a viable solution for the
One-dimensional Wave Equation. Now, in order to apply the design patterns
for communication components for developing the communication components

A2 - 3



for this example, some information related with the Communicating Sequen-
tial Elements pattern and the parallel platform and programming language is
required. This information is summarized as follows.

2.1 The Communicating Sequential Elements pattern

The algorithmic solution for the One-dimensional Heat Equation is defined in
terms of calculating the next temperature of the wire segments as ordered data.
Each segment is operated almost autonomously. The exchange of data or com-
munication should be between neighboring segments of the wire. So, the Com-
municating Sequential Elements (CSE) pattern has been chosen as an adequate
solution for the One-dimensional Heat Equation. The design of the parallel
software system has been continued based on the Solution section of the CSE
pattern, as briefly described as follows [14, 16].

• Description of the coordination. The CSE pattern describes a coor-
dination in which multiple Segment objects act as concurrent process-
ing software components, each one applying the same temperature opera-
tion, whereas Channel objects act as communication software component
which allow exchanging temperature values between sequential compo-
nents. No temperature values are directly shared among Segment ob-
jects, but each one may access only its own private temperature values.
Every Segment object communicates by sending its temperature value
from its local space to its neighboring Segment objects, and receiving
in exchange their temperature values. This communication is normally
asynchronous, considering the exchange of a single temperature value, in
a one to one fashion. Therefore, the data representing the whole one-
dimensional wire represents the regular logical structure in which data of
the problem is arranged. The solution, in terms of a segmented wire, is
presented as a network that actually reflects this logical structure in the
most transparent and natural form [14, 16].

• Structure and dynamics

1. Structure. When applying the CSE pattern for the One-dimensional
Heat Equation, the same operation is applied simultaneously to ob-
tain the next temperature values of each segment. However, this
operation depends on the partial results in its neighboring segments.
Hence, the structure of the actual solution involves a regular, one-
dimensional, logical structure, conceived from the wire of the orig-
inal problem. Thus, the solution is presented as a one-dimensional
network of segments that follows the shape of the wire. Identical
components simultaneously exist and process during the execution
time. An object diagram, representing the network of segments that
follows the one-dimensional shape of the wire and its division into
segments, is shown in Figure 1 [16].

2. Dynamics. A scenario to describe a basic run-time behavior of the
CSE pattern for solving the One-dimensional Heat Equation is shown
as follows. Notice that all the segments, as basic processing software
components, are active at the same time. Every segment performs

A2 - 4



the same temperature operation, as a piece of a processing network.
However, for the one-dimensional case here, each segment object com-
municates with its previous and next neighbors as shown in Figure 2
[16].

The processing and communicating scenario is as follows [16]:

– Initially, consider only a single Segment object, segment(i).
At first, it exchanges its local temperature value with its neigh-
bors segment(i-1) and segment(i+1) though the adequate
communication Channel components. After this, segment(i)
counts with the different temperatures from its neighbors.

– The temperature operation is simultaneously started by the seg-
ment(i) component and all the other components of the wire.

– In order to continue, all components iterate as many times as
required, exchanging their partial temperature values through
the available communication channels.

– The process repeats until each component has finished iterating,
and thus, finishing the whole computation.

3. Functional description of components. The processing and commu-
nicating software components for solving the One-dimensional Heat

:Channel :Segment :Channel :Segment :Channel

Figure 1: Object diagram of CSE for solving the One-dimensional Heat Equa-
tion.

segment(i+1):Segment:Channelsegment(i):Segment:Channelsegment(i−1):Segment

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

obtainNextTemperature()obtainNextTemperature()obtainNextTemperature()

Figure 2: Sequence diagram of CSE for communicating temperatures through
channel components for the One-dimensional Heat Equation.

A2 - 5



Equation using the CSE pattern are described as follows [16].

– Segment. The responsibilities of a segment, as a processing
component, are to obtain the next temperature from the temper-
ature values it receives, and make available its own temperature
value so its neighboring components are able to proceed.

– Channel. The responsibilities of every channel, as a communi-
cation component, are to allow sending and receiving tempera-
ture values, synchronizing the communication activity between
neighboring sequential elements. Channel components are de-
veloped as the main design objective of this paper, in section
“Communication Design” below.

2.2 Information about parallel platform and programming

language

The parallel system available for this example is a SUN SPARC Enterprise
T5120 Server. This is a multi-core, shared memory parallel hardware plat-
form, with 18-CoreUltraSPARC T2, 1.2 GHz processors (capable of running 64
threads), 32 Gbytes RAM, and Solaris 10 as operating system. Applications for
this parallel platform can be programmed using the Java programming language
[13].

3 Communication Design – Specification of Com-

munication Components

3.1 The scope

This section takes into consideration the basic information about the parallel
hardware platform and the programming language used, as well as the CSE pat-
tern as the selected coordination for solving the One-dimensional Heat Equation.
The objective is to look for the relevant information for choosing a particular
design pattern as a communication structure.

Based on the information about the parallel platform (a shared memory
multi-core computer), the programming language (Java) and the description of
channels as communication software components for the CSE pattern presented
in the previous section, the procedure for applying a Design Pattern for the
Communication Components for the One-dimensional Heat Equation problem
is presented as follows [15, 17]:

1. Consider the architectural pattern selected in the previous step. From the
CSE pattern description, the design patterns which provide communica-
tion components and allow the behavior as described by this architectural
pattern for a coordination are the Shared Variable Channel pattern and
the Message Passing Channel pattern [15, 17].

2. Select the nature of the communicating components. Considering that the
parallel hardware platform to be used has a shared memory organization,
the nature of the communicating components for such memory organiza-
tion is considered to be shared variable.

A2 - 6



3. Select the type of synchronization required for the communication. Nor-
mally, the communication between software components that compose
an array communicated through point to point communication compo-
nents makes use of an asynchronous communication. If a synchronous
communications would be used, it is very likely that the processing soft-
ware components would block, waiting for receiving temperature values
from their counterpart. As every software component would be waiting,
none would be receiving, leading to a deadlock situation. In this case,
using a relaxation method such as Gauss-Seidel relaxation or the succes-
sive over-relaxation (SOR) at the coordination level would sort this out.
Nevertheless, in the problem analysis it is stated that a Jacobi relaxation
is to be used [16]. So, this makes it more important to make use of an
asynchronous communication scheme which avoids sender waiting for their
receivers.

4. Selection of a design pattern for communication components. Considering
(a) the use of the CSE pattern, (b) the shared memory organization of
the parallel platform, and (c) the use of asynchronous communications,
therefore the Shared Variable Channel pattern is proposed here as
the base for designing the communications between Sequential Elements.
Let us consider the Context and Problem sections of this pattern [15, 17]:

• Context: ‘A parallel program is being developed using the Com-
municating Sequential Elements architectural pattern as a domain
parallelism approach in which the data is partitioned among au-
tonomous processes (elements) as the processing components of the
parallel program. The parallel program is developed for a shared
memory computer. The programming language to be used counts
with synchronization mechanisms for process communication such as
semaphores, critical regions, or monitors’

• Problem: ‘A sequential element needs to exchange values with its
neighboring elements. Every data is locked inside each sequential
element, which is responsible for processing that data and only that
data’

From both these descriptions, it is noticeable that for the CSE pattern, on
a shared memory parallel platform, and using Java as the programming
language, the choice for developing the communication components for
this example is the Shared Variable Channel pattern [15, 17]. The
use of a shared memory parallel platform implies using shared variables,
and it is known that the Java programming language counts with the el-
ements for developing semaphores or monitors. Moreover, the channels
consider an asynchronous communication scheme between sender and re-
ceiver. Therefore, this completes the selection of the Design Pattern for
Communication Components of the One-dimensional Heat Equation. The
design of the parallel software system continues using the Shared Variable
Channel pattern’s Solution section as a starting point for communication
design and implementation.

A2 - 7



3.2 Structure and dynamics

This section takes information of the Shared Variable Channel design pattern,
expressing the interaction between its software components that carry out the
communication between parallel software components for the actual example
[15, 17].

1. Structure. The structure of this pattern applied for designing and imple-
menting channel communication components of the CSE pattern is shown
in Figure 3 using a UML collaboration diagram [6]. Notice that the chan-
nel component structure allows an asynchronous, bidirectional commu-
nication between two sequential elements. The asynchronous feature is
achieved by allowing an array of temperatures to be stored, so the sender
does not wait for the receiver [15, 17].

:SyncronizationMechanism

temperature[]:Double

:SyncronizationMechanism

temperature[]:Double

1.send(temperature)

2.write(temperature)3.read(temperature)

1.send(temperature)

2.write(temperature) 3.read(temperature)

4.receive(temperature)

4.receive(temperature)

segment(i):Segment segment(i+1):Segment

Figure 3: UML collaboration diagram of the Shared Variable Channel pattern
used for asynchronously exchange temperature values between sequential com-
ponents of the CSE solution to the One-dimensional Heat Equation.

2. Dynamics. This pattern actually emulates the operation of a channel com-
ponent within the available shared memory, multi-core parallel platform.
Figure 4 shows the behavior of the participants of this pattern for the
actual example [15, 17].

In this scenario, a point to point, bi-directional, asynchronous communi-
cation exchange of temperature values of type Double is carried out, as
follows:

• The segment(i) sequential element sends its local temperature value
by issuing a send(temperature) operation to the sending synchro-
nization mechanism.

• This synchronization mechanism verifies if the segment(i+1) sequen-
tial element is not reading the temperature shared variable. If
this is the case, then it translates the sending operation, allowing
a write(temperature) operation of the data item on temperature.
Otherwise, it blocks the operation until the temperature can be
safely written.

A2 - 8



segment(i):Segment :SyncMech :Double :SyncMech segment(i+1):Segment

temperature
temperature

:Double

temperature
temperature

temperature

temperature

temperature

send(temperature)
write(temperature)

write(temperature)

receive(temperature)

read(temperature)

read(temperature)

receive(temperature)

send(temperature)

Figure 4: UML sequence diagram for the Shared Variable Channel pattern
applied for exchanging temperature values between two neighboring sequential
elements of the CSE solution for the One-dimensional Heat Equation.

• When the segment(i+1) attempts to receive the temperature value,
it does so by issuing a receive(temperature) request to the syn-
chronization mechanism. This function returns a double type repre-
senting the temperature value stored in the shared variable temperature.
Again, only if its counterpart sequential element (here, segment(i))
is not writing on temperature, the synchronization mechanism grants
a read(temperature) operation from it, returning the requested
temperature value. This achieves the send and receive operations
between neighboring segment elements.

• On the other hand, when data flows in the opposite direction, a
similar procedure is carried out: the local temperature value of
segment(i+1) is sent by issuing a send(temperature) operation to
the synchronization mechanism.

• The synchronization mechanism verifies if the counterpart segment(i)
is not accessing temperature. If this is the case, then it translates
the sending operation, allowing a write(temperature) operation of
the temperature value on it. Otherwise, it blocks the operation until
the shared variable temperature can be modified.

• The segment(i) sequential element reads the temperature value by
issuing a receive(temperature) request to the synchronization mech-
anism. Again, only if segment(i+1) is not writing on temperature,
the synchronization mechanism grants a read(temperature) opera-
tion from it, returning the requested temperature value.

A2 - 9



3.3 Functional description of software components

This section describes each software component of the Shared Variable Channel
pattern as the participant of the communication sub-system, establishing its
responsibilities, input, and output [15, 17].

1. Synchronization mechanisms. This kind of components is used to
synchronize the access to the Double shared variables. Notice that they
should allow the translation of send() and receive() operations into
adequate operations for writing to and reading from the shared variables.
Normally, synchronization mechanisms are used to keep the order and
integrity of the shared data.

2. Shared variables. The responsibility of the shared variables is to store
the Double type that holds the temperature values exchanged by sequen-
tial elements. These shared variables are designer here as simple variables
that buffer during communication, for actually achieving an asynchronous
communication.

3.4 Description of the communication

The channel communication component, thus, acts as a single entity, allowing
the exchange of information between processing software components. Given
that the available parallel platform is a multi-core, shared memory system, the
behavior of a channel component is modelled using shared variables. Thus, a
couple of shared variables are used to implement the channel component as a
bidirectional, shared memory communication means between elements. It is
clear that such shared variables require to be safely modified by synchronizing
read and write operations from the elements. Hence, the Java programming
language provides the basic elements for developing synchronization mechanisms
(such as semaphores or monitors). This is required to preserve the order and
integrity of the transferred temperature values.

3.5 Communication Analysis

This section describes the advantages and disadvantages of the Shared Variable
Channel pattern as a base for the communication structure proposed.

1. Advantages

• A communication sub-structure based on the Shared Variable Chan-
nel pattern allows to keep the precise order of the exchanged tem-
perature values by considering a two directional FIFOs for its imple-
mentation, as well as synchronizing the access to both Double type
shared variables.

• The communication sub-structure based on the Shared Variable Chan-
nel pattern allows for a point to point, bidirectional communication
component.

• The use of synchronization mechanisms grants keeping the integrity
of transferred temperature values, assuring that at any given moment
only one element actual accesses any Double type shared variables.

A2 - 10



• The use of shared variables implies that the implementation is par-
ticularly developed for a shared memory parallel platform.

• The Shared Variable Channel pattern allows the use of asynchronous
communications between sequential elements by using the two Double
type shared variables as two communication buffers.

2. Liabilities

• As the available parallel platform is a shared memory one, the com-
munication speed tends to be similar to simple assignation operations
over shared variable addresses. Communications are only delayed by
the synchronization actions taken by the synchronization mechanisms
in order to keep the integrity of the temperature values. Nevertheless,
it is very little what can be done to improve communication perfor-
mance in terms of programming. The only programming action that
can be taken is to change the amount of processing of the sequential
elements, which modify the granularity, tuning the communication
speed.

• The implementation based on shared variables and synchronization
mechanisms such as semaphores, conditional regions, or monitors,
makes these communication sub-systems only suitable for shared
memory platforms. If the parallel software system is considered to be
ported to a distributed memory parallel platform, this would require
replacing each Shared Variable Channel pattern by a Message Passing
Channel pattern [15], and design and implement the communication
sub- systems as indicated by this pattern.

4 Implementation

In this section, all the software components described in the communication
design section are considered for their implementation using the Java program-
ming language. Here, the implementation of the communication sub-system is
developed. It interconnects processing components that implement the actual
computation that is to be executed in parallel [16]. So, the implementation is
presented here for developing the channel as communication and synchroniza-
tion components. Nevertheless, describing the entire design and implementation
of the whole parallel software system goes beyond the actual purposes of the
present paper.

4.1 Synchronization Mechanism

Based on the Java programming language, a basic description of a synchroniza-
tion mechanism that controls the access to the temperature array is presented
as follows:

import java.util.Vector;

class SynchronizationMechanism {

private int numMessages = 0;

private final Vector temperatures = new Vector();

A2 - 11



public final synchronized void write(double temp){

...

numMessages++;

temperatures.addElement(temp);

...

}

public final synchronized double read(){

double temp = 0.0d;

numMessages--;

...

temp = temperatures.firstElement();

temperatures.removeElementAt(0);

return temp;

}

}

The class SynchronizationMechanism presents two synchronized methods,
write() and read(), which allow to safely modify the temperatures buffer and
allows an asynchronous communication between segment components. This
class is used in the following implementation stage as the basic element of the
channel components.

4.2 Communication components – Channels

Using the class SynchronizationMechanism from the previous section, here it
is used as the synchronization mechanism component as described by the Shared
Variable Channel pattern, in order to implement the class Channel, as follows:

public final class Channel {

private SynchronizationMechanism m0 = null;

private SynchronizationMechanism m1 = null;

public Channel(){

m0 = new SynchronizationMechanism();

m1 = new SynchronizationMechanism();

}

public void send0(Channel c, double temp){

if(temp == null) throw new NullPointerException();

m0.write(temp);

}

public void send1(Channel c, double temp){

if(temp == null) throw new NullPointerException();

m1.write(temp);

}

public double receive0(Channel c){

return m0.read();

}

public double receive1(Channel c){

return m1.read();

}

}

Each channel component is composed of two synchronization mechanisms
which allow the bi-directional flow of data through the channel. In order to
keep the direction of each message flow, it is necessary to define two methods for

A2 - 12



sending and other two methods for receiving, and keep attention about the flow
of messages. Each method distinguishes on which synchronization mechanism
of the channel the message is written. This allows that the channel is capable
of allowing a simultaneous bi-directional flow. In the present example, this is
used to enforce the use of the Jacobi relaxation [16]. In fact, using (a) a channel
communication structure with two-way flow of data, (b) making each one of
them asynchronous, and later, (c) taking care on the communication exchanges
between segment components, are all design previsions for avoiding any potential
deadlock. In parallel programming, it is generally advised that during design,
all previsions should be taken against the possibility of a deadlock.

Moreover, in case of modifying the present implementation for executing on a
distributed memory parallel system, it would be necessary only to substitute the
implementation of the class Channel, but using the Message Passing Channel
pattern [15] as a base for its definition.

5 Summary

The design patterns for communication components are applied here along with
a method for selecting them, in order to show how to select a design pattern that
copes with the requirements of communication present in the One-dimensional
Heat Equation problem. The main objective of this paper is to demonstrate,
with a particular example, the detailed design and implementation that may
be guided by a selected design pattern. Moreover, the application of the design
patterns for communication components and the method for selecting them is
proposed to be used during the communication design and implementation for
other similar problems that involve the calculation of differential equations for
a one-dimensional problem, executing on a shared memory parallel platform.

6 Acknowledgements

The author wishes to thank Stefan Sobernig, my shepherd for EuroPLoP 2010,
for his encouraging comments about the present paper.

References

[1] G.R. Andrews Foundation of Multithreaded, Parallel and Distributed Pro-
gramming., Addison-Wesley Longman, Inc., 2000.

[2] Brinch-Hansen, P., Structured Multiprogramming. Communications of the
ACM, Vol. 15, No. 17. July, 1972.

[3] Brinch-Hansen, P., The Programming Language Concurrent Pascal. IEEE
Transactions on Software Engineering, Vol. 1, No. 2. June, 1975.

[4] P. Brinch-Hansen Distributed Processes: A Concurrent Programming Con-
cept., Communications of the ACM, Vol.21, No. 11, 1978.

[5] E.W. Dijkstra Co-operating Sequential Processes, In Programming Lan-
guages (ed. Genuys), pp.43-112, Academic Press, 1968.

A2 - 13



[6] Fowler, M., UML Distilled. Addison-Wesley Longman Inc., 1997.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Systems. Addison-Wesley,
Reading, MA, 1994.

[8] S. Hartley Concurrent Programming. The Java Programming Language.,
Oxford University Press Inc., 1998.

[9] Hoare, C.A.R., Towards a theory of parallel programming. Operating
System Techniques, Academic Press, 1972.

[10] Hoare, C.A.R., Monitors: An Operating System Structuring Concept.
Communications of the ACM, Vol. 17, No. 10. October, 1974.

[11] C.A.R. Hoare Communicating Sequential Processes. Communications of
the ACM, Vol.21, No. 8, August 1978.

[12] S. Kleiman, D. Shah, and B. Smaalders Programming with Threads, 3rd ed.
SunSoft Press, 1996.

[13] J.L. Ortega-Arjona and G.R. Roberts Architectural Patterns for Parallel
Programming, Proceedings of the 3rd European Conference on Pattern
Languages of Programming and Computing (EuroPLoP98), Kloster Irsee,
Germany, 1998.

[14] J.L. Ortega-Arjona The Communicating Sequential Elements Pattern. An
Architectural Pattern for Domain Parallelism, Proceedings of the 7th
Conference on Pattern Languages of Programming (PLoP2000), Allerton
Park, Illinois, USA, 2000.

[15] J.L. Ortega-Arjona Design Patterns for Communication Components,
Proceedings of the 12th European Conference on Pattern Languages of Pro-
gramming and Computing (EuroPLoP2007), Kloster Irsee, Germany, 2007.

[16] J.L. Ortega-Arjona Applying Architectural Patterns for Parallel Program-
ming. Solving the One-dimensional Heat Equation, Proceedings of the 14th
European Conference on Pattern Languages of Programming and Comput-
ing (EuroPLoP2009), Kloster Irsee, Germany, 2009.

[17] J.L. Ortega-Arjona Patterns for Parallel Software Design, John Wiley &
Sons, 2010.

[18] Shalloway, A., and Trott, J.R., Design Patterns Explained: A New Perspec-
tive on Object-Oriented Design. Software Pattern Series. Addison-Wesley,
2002.

A2 - 14


