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ON THE CECH NUMBER OF C,(X), II

OFELIA T. ALAS AND ANGEL TAMARIZ-MASCARUA

ABSTRACT. The Cech number of a space Z, Cv'(Z)7 is the pseudocharacter of Z
in BZ. In this article we obtain (in ZFC and assuming additional set theoretic
consistent axioms) some upper and lower bounds of the Cech number of spaces of
continuous functions defined on X and with values in R or in [0, 1] with the pointwise
convergence topology — denoted by Cp,(X) and Cp (X, I) respectively — when: (1) X
has countable functional tightness, (2) X is an Eberlein-Grothendieck space, (3) X
is a k-space and (4) X is a countable space. Also, we prove some results related to
kecov(Cp(X)) = min{|K| : K is a compact cover of Cp(X)}. And we answer several
questions posed in [OT]; in particular, it is proved that C'(Cp(X)) = ¢ for every
metrizable space X with |X| = ¢, and a consistent example of a non-discrete space
X with C(Cp(X, 1)) < 0 is provided.

1. NOTATIONS AND BASIC RESULTS

In this article, every space X is a Tychonoff space, and X’ is the set of non
isolated points in X. The symbols w (or N), R, I, Q and P stand for the set of
natural numbers, the real numbers, the segment [0, 1], the rational numbers and
the irrational numbers, respectively. Given two spaces X and Y, we denote by
C(X,Y) the set of all continuous functions from X to Y, and Cp(X,Y) stands
for C(X,Y) equipped with the topology of pointwise convergence, that is, the
topology in C(X,Y") of subspace of the Tychonoff product Y*. We will denote by
[€1, oy Tn; A1, ..., Ay) the canonical open subset {f € C(X,Y) : f(z;) € A; Vi €
{1,...,n}} of Cp(X,Y) where z1,...,z, € X, and A4, .., A, are open subsets of Y;
in particular, for Y C R and § > 0, we will denote the set of continuous functions
f from X to Y such that |f(xz) — z| < ¢ as [z; (2 — 6,z + 0)]. The space Cp(X,R)
is denoted by C,(X). The restriction of a function f with domain X to A C X is
denoted by f | A. For a space X, X is its Stone-Cech compactification, and X*
is the subspace X \ X of X.

Recall that for X C Y, the pseudocharacter of X in'Y is defined as

U(X,Y) = min{|t/| : U is a family of open sets in ¥ and X =("|U}.
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1.1. Definitions. (1) The Cech number of a space Z is C(Z) = W(Z, 7).
(2) The k-covering number of a space Z is kcov(Z) = min{|K| : K is a compact
cover of Z}.

We have that (see Section 1 in [OT]): C(Z) = 1 if and only if Z is locally
compact; C(Z) < w if and only if Z is Cech-complete; C(Z) = kcov(8Z \ Z); if Y
is a closed subset of Z, then kcov(Y) < keov(Z) and C(Y) < C(Z);if f: Z - Y
is an onto continuous function, then kcov(Y') < kecov(Z); if f: Z — Y is perfect
and onto, then kcov(Y) = kcov(Z) and C(Y) = C(Z); if bZ is a compactification
of Z, then C(Z) = U(Z,b2).

We know that C'(C,,(X)) < X if and only if X is countable and discrete ([LMc]),
and C(Cp(X,I)) < Xg if and only if X is discrete ([T)).

For a space X, ec(X) (the essential cardinality of X) is the smallest cardinality
of a clopen subspace Y of X such that X \ Y is discrete. Observe that, in this case,
C(Cp(X, 1)) = C(Cy(Y,I)). In [OT] it was pointed out that ec(X) < C(Cp(X, 1))
and C(Cp(X)) = |X|- C(Cp(X,I)) always hold. So, if X is discrete, C(Cp(X)) =
|X|, and if | X| = ec(X), C(Cp(X)) = C(Cp(X, T)).

Consider in the set of functions from w to w, “w, the partial order <* defined by
f<*gif f(n) < g(n) for all but finitely many n € w. A collection D of (“w, <*)
is dominating if for every h € “w there is f € D such that h <* f. As usual, we
denote by 0 the cardinal number min{|D| : D is a dominating subset of “w}. It is
known that 9 = kcov(P) (see [vD]); so @ = C(Q). Moreover, w; <0 < ¢, where ¢
denotes the cardinality of R.

We will denote a cardinal number 7 with the discrete topology, simply, as 7;
so, the space 7" is the Tychonoff product of x copies of the discrete space 7. The
cardinal number 7 with the order topology will be symbolized as [0, 7).

In this article we will relate C(Cp(X, I)) with the functional tightness and the
weak functional tightness of X (Section 3), and obtain some upper and lower bounds
of C(Cp(X,I)) when X is one of the following: an Eberlein-Grothendieck space
(Section 4), a k-space (Sections 5 and 6), a countable space (Section 7). We will
relate C'(Cp(X, I)) with the Novak numbers of R and I7 (Section 8). Also, we will
consider C(C,(X,I)) when some consistent axioms are assumed such as M A and
GCH (Section 9). Some results involving the compact covering of Cp,(X) are proved
(Sections 2 and 4), and several questions posed in [OT] are answered; in particular,
we show that the existence of a countable space X for which C(C,(X,I)) < 0 is
consistent with ZFC' .

For notions and concepts not defined here the reader can consult [Ar] and [E].

2. CONDITIONS ON X WHICH ARE IMPLIED BY C(C,(X,T))

For an infinite cardinal number 7, let 9, be the smallest cardinality of a dom-
inating family of functions from w to 7. We have that 2, = cof(7) if cof(1) > w
and 0, = 0 if cof(7) = w. 9, concide with kcov([0,7)¥). Of course, 2, = 0. A
space X is a P;-space if the intersection of less than 7 open sets in X is an open set
yet. We say that X is a P-space if it is a P,,,-space. Observe that every topological
space is a P,-space.

We will say that a space X is a Pr-space with respect to chains, or briefly, cP; -
space, if for every sequence {A) : A < 7} of open subsets of X with Ay C A, if
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a < A, we must have that (), Ay is open. So, we have: (1) X is a cP,-space iff
it is cP.op(r)-space, (2) every Pr+-space is a cPr-space, (3) a space X is a P-space
iff it is a cP,-space, (4) if |X| < cof(7), then X is a cP,-space. Furthermore, for
a regular cardinal number 7 > w, [0,7) is a ¢Pr-space which is not a P.i-space
(and it is not cP,-space for all cardinal number v < 7), and the topological space
(t+1,7T) where T ={AC7+1:eithertg AorT€ Aand [T+1\ 4| <7}isa
P.-space (and, then, it is a c¢P,-space for every v < 7) which is not a cP--space.

For a cardinal number s, we say that a space X is initially k-compact if every
open cover of X of cardinality < k has a finite subcover. It is known that X
is initially k-compact if and only if every subset E of X of cardinality < x has a
complete accumulation point x; that is, for every neigborhood V of z, [VNE| = |E|
(see [St], Theorem 2.2). Of course, (1) every closed subset of an initially x-compact
shares this property, (2) a space is countably compact iff it is initially w-compact,
and (3) every compact space is initially x-compact for every k.

2.1. Theorem. Let X be a topological space and k < 0. Then (1) = (2) = (3)
where:

(1) Cp(X) is the union of k initially T-compact subsets.
(2) Cp(X,I) is the union of k initially T-compact subsets.
(3) X is a c¢Pr-space.

Proof. (1) = (2): Of course, if Cp(X) is the union of x initially 7-compact subsets,
then so is Cp(X, I) because it is a closed subset of Cp(X).

(2) = (3): The proof follows the pattern of the proof of Corollary 1.2.4 in
[Ar]: Let Cp(X,I) = U,cp Ko, where each K, is initially 7-compact. If X is
not a cP;-space, there is an increasing sequence of closed sets (F)x<- and a point
Y« € Uy, F2) \ Uy, Fx. Denote by Ki, = {f € Ko : f(y«) = 0} for each
a < K. Since K, is a closed subset of K,, K/, is initially 7-compact.

Claim: For each o < k and each k < w, there is A(a, k) € 7 such that for every
[ € K, there exists y; € F)(q,) for which f(yy) < 1/2+1,

Indeed, assume the contrary of the conclution of this Claim. That is, there are
a < K and k < w such that for each A < 7 there is f\ € K/, with f\(y) > 1/2F+!
for all y € F. Since K, is initially 7-compact, there is f € K, which is a complete
accumulation point of the set {fy : A < 7} in Cy(X,I). Take y € U,_, Fi; say
y € P, If f(y) < 1/2", then f € [y (f(y) — 0. f(y) +0)] = {g € Cp(X, 1) :
|f(y) — g(y)| < 6} where § = 1/2*¥*! — f(y). Since f is a complete accumulation
point of {fx : A < 7}, there is A > A\g such that fi € [y; (f(y) — 6, f(y) + )]. But,
this implies that fy(y) < 1/2*+!, which is not possible because y € Fy, C F) and
then, by assumption, fy(y) > 1/2F+1.

Thus, f(y) must be > 1/2"! for every y € [J,, Fx. Since f is continuous
and y. € clU, ., F, then f(y.) > 1/2¥+1 > 0. But, f € K/, which implies that
f(y«) =0, a contradiction. This proves the Claim.

Hence, for each oo < k, we have a function h,, : w — 7 defined by ho (k) = Ao, k).
Since [{hq : @ < K} < 0, {hq : @ < Kk} is not dominating in 7¢, so there is
h:w — 7 such that h £* h, for all @ < k.
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For each k < w, fix gr : X — [0,1/2**1], continuous, such that gi(y.) = 0
and g(t) = 1/28*! when t € Fuy. Let g be equal to Xp<,gr. We have that
g € Cp(X, I), so there is 3 < k for which g € Kj.

Since h £* hg, the set {n < w : h(n) > hg(n)} is infinite; fix m such that
h(m) > hg(m). The relation g € Kj; implies that there is y € Fj,;(m) for which
g(y) < 1/2™F1 But y € Fiyym) C Faom) and g(y) > 1/2™F1; a contradiction. [

2.2. Corollary. Let X be a topological space, and let ~v be the first cardinal
number such that X is not a P.+-space. Then, Cp,(X) cannot be equal to the union
of k initially «y-compact subsets for any x < 0.

2.3. Corollary. Let X be a topological space and k < 0. Then (1) = (2) = (3),
where:

(1) Cp(X) is the union of k countably compact subsets.
(2) Cp(X,I) is the union of k countably compact subsets.
(3) X is a P-space.

For a cardinal number 7, we say that a space X is weak-T-pseudocompact if every
discrete collection of open sets in X has cardinality < 7. Then, we have that a space
X is pseudocompact if and only if it is weak-Ny-pseudocompact.

2.4. Theorem. Let X be a topological space and let k < kcov(w™). Then (1) =
(2) = (3), where:
(1) X is not discrete and R \ C,(X) is contained in the union of x countably
compact subsets of RX.
(2) Cp(X) is contained in the union of x countably compact subsets of RX.
(3) X is weak-T-pseudocompact.

Proof. (1) = (2): Assume that R¥\ C,,(X) is contained in the union of x countably
compact subsets of RX. Since X is not discrete, there exists fo € R¥ \ Cp(X), and
Cp(X) + fo CR¥\ Cp(X) C Uyep Ko where K, is a countably compact subset of
R*. Thus, Cp(X) C U<, (Ka — fo). Moreover K, — fo is countably compact for
every a < K.

(2) = (3): Now, assume that Cp(X) C U,., Ko C R¥, each K, is countably
compact, and assume that (Uy)x<- is a discrete collection of open nonempty subsets
of X. For each A < 7 fix by € Uy and fix hy : X — [0, 1], continuous, such that
h)\(b)\) =1 and h)\(t) =0ifte X \ Us.

For each o < k define g4 : 7 — w as follows: For each A < 7 we define

go(A) = n$ where mp, [K4] C [, nS].

For each a < K, we take Co = [[,_,[-n%,n]. Each C, is a compact subset of
w™. Since k < kcov(w™), there is f: 7 — w such that f & J, ., Ca-

Define ¢ : X — R as ¢(t) = Zxncrf(A) - ha(t). Since (Ux)a<r is discrete, ¢ is
continuous. Hence, there is 8 < & such that ¢ € K. For each A < 7, ¢(by) = f(N),
and f(A) € [—néj , né\j], hence, f € Cg, which is a contradiction. Then, every discrete
collection of nonempty open subsets of X must be of cardinality < 7. O

For a space X we denote by ¥(X) the supremum of the set {|C|: C is a discrete
collection of open sets of X}. By Theorem 2.4, if X is not discrete, 9(X) <
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keov(Cp(X)). Observe that if X is discrete and infinite, then C(C,(X)) = C(RY) =
|X| (Lemma 2.1 in [OT]) and kcov(Cp(X)) = keov(RX) = kcov(w™). In fact, since
N¥ is a closed subset of R, kcov(RX) > kcov(wX). On the other hand, R is a
continuous image of w*”, so RX is a continuous image of w™; then, kcov(RX) <
kcov(w™).

Theorems 2.1 and 2.4 produce the following corollaries.

2.5. Corollary. Let X be a topological space and let w < k < 9. Then C,(X) is
contained in the union of k countably compact subsets of RX if and only if X is
pseudocompact.

Proof. 1f X is pseudocompact, then Cp(X) C |, ., [-n,n]* C R¥.
The converse follows from Theorem 2.4.

D.B. Shakmatov and V.V. Tkachuk, and N.V. Velichko proved that Cp,(X) is
o-compact < Cp(X) is o-countably compact < X is finite (see [TS] and Corollary
1.2.4 in [Ar]). The following result is a generalization of their result.

2.6. Corollary. kcov(Cp(X)) < 0 if and only if X is finite.

Proof. It X is finite of cardinality n, then kcov(Cp(X)) = kcov(R™) = Ry < 0.
If kcov(Cp(X)) < 0 then X is a pseudocompact P-space, that is, X is finite. O

2.7. Corollary. If X is a non-discrete space, then kcov(Cp(X)) > 0.

We cannot have a similar result to the last corollary for Cp(X,I). In fact, let
X = Y U {p} be the one point Lindeloéfication of the discrete space Y = {y, :
A < w1}, where p ¢ Y is the distinguished point. We have that C,(X, I) is equal
to Uy<w, Fo where F, = [0, 1]¥e x A, where Y, = {y, : v < a} and A, is the
diagonal in [0, 1]X\Ye, Each F, is a closed subset of [0, 1], so it is compact. Then
Cp(X,I) is the union of wy compact subsets, and it is consistent with ZFC' that
wp < 0.

Since Cp(X, I) is a closed subset of Cp,(X) and Cp(X) = R¥ N C,(X, [—00, 00]),
then kcov(Cp (X, T)) < keov(Cp(X)) < keov(Cp(X, I)) - keov(w!X1) always happens.
Moreover, if X = fw, then kcov(Cp(X)) < 29X = ¢ < 2¢ = ec(X) < keov(w!X1).

3. C(Cp(X)) FOR SPACES X WITH COUNTABLE FUNCTIONAL TIGHTNESS

Let 7 be a cardinal number. A function f : X — Y is called 7-continuous if
for every subspace A of cardinality < 7, the restriction of f to A is continuous.
The functional tightness tg(X) of a space X is the smallest infinite cardinal 7 such
that every realvalued 7-continuous function on X is continuous [A2]. A function
f X — Y is called strictly-T-continuous if for every subspace A of cardinality
< 7, there is a continuous function g : X — Y for which g [ A = f [ A. The
weak functional tightness tr(X) of a space X is the smallest infinite cardinal 7 such
that every realvalued strictly-T-continuous function on X is continuous [Al], [A2].
It is obvious that for every space X, tr(X) < t9(X), and tr(X) = to(X) if X is
normal (see [Ar], Proposition 11.4.8). Also, note that if ¢(X) denotes the tightness
of X, then tp(X) < t(X). Besides, tg(X) is always < to the density d(X) of X
(see Proposition I1.4.2 in [Ar]). The topological cardinal function tg measures some
kind of degree of realcompactness of Cp,(X). In particular, C,(X) is realcompact if
and only if tgr(X) = Ng, [Ar], Theorem II.4.16.
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3.1. Proposition. Let X be a space and k be a cardinal number. Assume that
te(X) < cof(ec(X)) and that for every subspace Z of X of cardinality < ec(X),
C(Cp(Z,1)) < k. Then C(Cp(X, 1)) < cof(ec(X)) - k.

Proof. Let Y be a clopen subspace of X of cardinality ec(X) such that X \ Y is
discrete. Then to(Y) = tg(X) and C(Cp(X, 1)) = C(Cp(Y,1)). Let {yr : A <
ec(X)} be a faithful enumeration of Y. For each ordinal number v < ec(X), let
Zy={yn : A< ~tand C, = {f € IV : f | Z, € Cp(Z,,I)}. Let {Qa

o < k} be a collection of open sets in 147 which satisfies Cp(Zy,1) = Ny<p Qa-
Consider the set W, = Q4 x IY\%7 for each o < k. They are open in I¥ and
Nacr Wa = Cy. So C(C,) < C(Cp(Zy,1)) < k. On the other hand, C9 = {f €
Cy ¢ f(ya) = 0 for every a > v} is a closed subset of C, which is homeomorphic
to Cp(Z,,1). Thus, C(C,) = C(Cy(Z,,I)). Moreover, it is easy to prove that
Cp(YI) C Ny <ee(x) Cy- Now, from the fact that t9(Y) = to(X) < cof(ec(X)), we
get Cp(Yo 1) = Ns<cop(ec(x)) Cr(s)- Therefore, C(Cp(X, 1)) < cof(ec(X)) k. O

3.2. Theorem. For every space X, C(Cy(X, 1)) < ec(X)t=(X).

Proof. Let Y be a clopen subspace of X with X \ Y discrete and |Y| = ec(X ).
We are going to prove that C(C,(Y,I)) < |YV[®=(). Observe that tg(Y) = tg(X).
Let A denote the set of all mﬁmte subsets of Y of cardinality < tg(Y). (So,
Al < [Y]0),

For each A € A we consider the set Cy = {f € Cp(A,I) : 3 g € Cp(Y,I) with
gl A= f] A} We have that C(C4) < 241 < 2820 Pyt A = 28=(Y) and fix a
family {Q4 : @ < A} of open subsets of I such that

M) N o=

a<A

Now define, for each A € A and a < A\, W2 = Q4 x IY\4 which is open in IY .
We shall prove that

(2) M N Wa =G, D).

AcA a<

Indeed, if f € Cp(Y,I), then f [ A€ Cy forevery A€ Aand f | A€ Q4 for
every a < A, hence f € W2 for every A € A and every a < X. On the other hand,
if g: Y — I is not continuous, there exists A C Y of cardinality < ¢g(Y") such that

[ A& Cy; so, there is 8 < X for which g [ A & Qg. Therefore, g & W[‘;‘. O

3.3. Corollary. For every space X with ec(X) = ec(X)=X) C(C,(X, 1)) =
ec(X).

The following result, which follows from Corollary 3.3, answers Question 4.19 in
[OT] in the affirmative.

3.4. Corollary. Let X be a metrizable space with ec(X) = ¢. Then
C(Cp(X, 1)) =¢

Theorem 3.2 produces:
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3.5. Corollary. For every space X,
C(CH(X, 1)) < ec(X)) < min{ec( X)) ec(X)UX0Y,

~ We have that ec(fw) = ec(w”) = |w*| = 22° and t(fw) = t(w*) = 2¢; thus
C(Cp(Bw, 1)) = C(Cy(w*, 1)) = 2*".

3.6. Corollary. Let X be a topological space with ec(X) = ¢. If Cp(X) is a
realcompact space, then C(Cp(X, 1)) = c.

Proof. The hypothesis of this Corollary implies that tg(X) = N (see 11.4.16 in
[Ar]). Now, in order to finish the proof, we have only to apply Corollary 3.3. O

Even for collectionwise normal spaces X with essential cardinality ¢, ec(X) =
¢ = C(Cy(X, 1)) does not imply the realcompactness of Cj,(X) as was noted by O.
Okunev. In fact, let X = [0,¢c]. We have that ¢ = ec([0,¢]) < C(Cp([0,¢],I) <
kcov(¢¥) = ¢ (see [AT]). On the other hand, tr([0,¢]) = ¢ > Ry, so Cp([0,¢])
is not realcompact. Also observe that C(C,([0,¢],I) = ¢ is strictly less than
ec([0, ¢])t=(0:) = 2¢,

Since, for every non-discrete space X, tr(X) < ec(X), we have ec(X)®(X) <
2¢¢(X) . Therefore, for every non-discrete space X, ec(X) < C(Cp(X, 1)) < 260,
In particular, GCH implies ec(X) < C(Cp(X,I)) < ec(X)™ for every non-discrete
space X.

4. C(Cp(X)) FOR EBERLEIN-GROTHENDIECK SPACES X

A space X is an Eberlein-Grothendieck space or an EG-space if it is a subspace
of a space Cp(Y') where Y is a compact space (or, equivalently, X is a subspace of
Cp(Y) for a o-compact space Y, [Ar], Theorem. III.1.11).

The following lemma is proved in [OT, Lemma 4.3].

4.1. Lemma. Let X be a subspace of C,,(Y), K a compact set in X, and let C' be
the set of all functions in IX that are continuous at every point of K. Then there
is a family { By, : m € Nt n € NT } of subsets of I such that
(1) C= N U Bmn, and
meNtT neN+
(2) for any m,n € NT, B,,, is a continuous image of a closed subspace of
Y™ x IX.

We utilize Lemma 4.1 to prove the following result that generalizes Corollary 4.5
in [OT]. Tt is worth recalling here Definition 3.1 in [OT]: for two cardinal numbers
7> 1 and A, a space X is K(7, A)-analytic if X is a continuous image of a closed
subspace of a product of 7* and a compact space.

4.2. Theorem. For every EG-space X,

ec(X) < C(Cp(X, 1)) < keov(ec(X)¥).

Proof. Let Z be a compact space such that X is a subspace of Cp,(Z). Let Y be
a subspace of X such that X \ Y is clopen, discrete and |Y| = ec(X). We have
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that C(C,(X,I)) = C(C,(Y,I)). So we are going to prove that C(Cp(Y,I)) <
kcov(]Y']“). Let C be a compact cover of ¥ with minimal cardinality (|C| =
kcov(Y)). For each K € C we take the set O = {f € IY : f is continuous
(as a function from Y to I) in each point of K'}. Lemma 4.1 guaranties that there
exists a familly {BX :m,n < w} of subsets of I' such that

(1) CK = mm<w Un<w Bnlgfw and

(2) each BE  is a continuous image of a closed subspace of Z™ x IY .

Since Z is a compact space, each BX is compact, so IV \ BE, is an open subset
of IV, but each open subset of I is the union of |Y'| compact subsets because IV is
a locally compact space with weight equal to |Y]. Say IY \ BE, =, <|v| Ca where
C, is compact for every o < |Y|. Therefore, I" \ Cx = U0, Nnew Ua<py| Ca is
a K(|Y],w)-analytic set. This means that C(Ck) = kcov(I¥ \ Ck) < kecov(|Y|¥)
([OT], Proposition 3.2). For each K € C, let Ax be a familly of open subsets of
IY with cardinality < kcov(]Y|*) satisfying Cx = () Ax. We have that C,(Y,I) =
Niee Crc; 50 Cp(Y, 1) = Ngee N Ax. Thus, C(Co(Y, 1)) < keov(Y) - keov(|Y|%) =
keov(Y|*). O

It was proved in [OT] that for every non-discrete space X the relation ec(X) <
C(Cp(X, 1)) holds; and Corollary 4.12, in the same article, states that if X con-
tains a convergent sequence, then C'(C,(X,I)) > 9. Thus, since every non-discrete
metrizable space is an FG-space and contains a non trivial convergent sequence,
we obtain for every non-discrete metrizable space X, ec(X) -2 < C(Cp(X, 1)) <
kcov(ec(X)“). Moreover, if 7 < w,,, then kcov(r¥) = 7-0. So, if X is a metrizable
non-discrete space and ec(X) < w,, then C(C,(X, 1)) = ec(X) - 2.

For a cardinal number 7, a space X is a K,,-set if X is a subspace of a space Y’
and there are o-compact subspaces Yy of Y (A < 7) such that X = Ny, Y. If X
is a K,,-set, then X is an F,.-set in every space where X is embedded.

4.3. Proposition. Let X be a non-discrete EG-space and let 7 = kcov(X). Then
Cp(X,I) is a K,--set.

Proof. Let X = |J,., Kx where K) is compact for all A < 7. By Lemma 4.1,
for each A < 7, C\ = {f : X — I : f is continuous at each point in K)} =

Nin<w Uncw Ban Where By, is compact for each m, n < w and each A < 7. There-
fore, Cp(X, 1) = Mycr Nimcw Uncw B that is Cp(X, 1) is a Kyr-set. O

4.4. Corollary. If X is a non-discrete EG-space and 7 = kcov(X), then
kcov(Cy(X, 1)) < keov(w™) < keov(w!XT).

Proof. By Proposition 4.5, C,(X, I) is an F,-set in IX. So, it is K (w, 7)-analytic
and kcov(Cp(X, 1)) < kcov(w™) (see Corollary 3.4 in [OT]). The last inequality
follows because kcov(X) < |X| always holds. O

5. C(Cp(X)) WHEN X IS A SEQUENTIAL SPACE

5.1. Definitions. ([S]) (a) For a topological space X, a collection P of subsets of
X is called a sequential base if for every point x € X one can assign a collection
P C P¥ such that

(1) if (Py)n<w € Py, then z € P, and P,., C P, for each n < w,

nw
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(2) aset V is open in X iff for every point x € V and every (P, )n<w € Py there
exists m < w such that P,, C V.

(b) Let P be a sequential base of a space X. Then, the fan number of P, denoted
fn(P), is the smallest cardinal 7 such that for each x € X, the collection P, may
be chosen with cardinality < 7.

S.A. Svetlichny proved in [S] that a space X is sequential iff X has a sequential
base.
In the sequel we will use the following

5.2. Notations. For each n < w, we will denote as &,, the collection of intervals
[0,1/2%4), (1/27+2,3/27F2), (1/2"F, 2/27F1), (3/27F2,5/2"+2), ..

o (272 = 2) /22 (Qn 2 1) on Ry ((2n T — 1) /27T 1.

Observe that &, is an irreducible open cover of [0, 1] and each element in &, has
diameter = 1/2" %!, For a set S and a point y € S, we will use the symbol [yS]<%
in order to denote the collection of finite subsets of S containing y.

5.3. Theorem. For every non-discrete sequential space X with sequential base P,

ec(X) -0 < C(Cp(X, 1)) < fn(P) - kecov(ec(X)®).

Proof. Let Y be a clopen subspace of X for which X'\Y is discrete and |Y| = ec(X).
For each y € Y, each (T})n<w € Py and each n < w, we take S, = T,, NY. Let
Py = {(Sn)n<w : (Tn)n<w € Py}. Observe that P’ = {Sy, : m < w, (Tn)n<w € Py
and y € Y} is a sequential base for Y where for each y € Y, P, = {(Sn)n<w :
(Th)n<w € Py}. Moreover fn(P’) < fn(P).

For each y € Y', s = (Sp)n<w € Py, myn < w, B € &, and F € [yS,|<*, we
take the set

B(y,s,E,m,F) = H J.
z€Y

where J, = FEifz€e Fand J, =1if 2 ¢ F. Let

B(y,s,n,m,F)= | J B(y,s, E,m,F).
EcE,

We define
B(y, s,n,m) = ({B(y, s,n,m, F) : F € [yS,,]<“}.

Because S, C Y, B(y,s,n,m) is the intersection of < ec(X) open subsets
B(y,s,n,m, F) of IY. Now we define G(y,s,n) = Um<o By, 8,n,m), G(y,s) =
Npeo Gy, 8,1), G(y) = mseP; G(y, s) and, finally, G = [,y G(y).

Claim: G = C(Y,I).

Indeed, let g € C(Y,I), y € Y', s = (Sp)n<w € P, and n < w. We shall prove
that ¢ € G(y, s,n); that is, we are going to show that there is m < w so that
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g € B(y,s,n,m). There is E € &, such that g(y) € E. Since g is a continuous
function in y, there exists an open set V of Y containing y for which g(V) C E.
By definition of sequential base, there exists N < w such that Sy C V. For
every F' € [ySy|<¥, g € B(y,s,E,N,F). Then, g € B(y,s,n,N). Therefore,
C(Y,I) C G.

Now, assume that h € IY \ C(Y,I). There are a point y € Y’, € > 0 and a
SeqUENCe g, L1, ..., Tn, ... 0 Y \ {y} which converges to y and such that

() [h(zn) = h(y)| > €

for all n < w. Let k > 1 such that 1/2%¥ < e. Theset W/ =Y\ ({x, : n < w}U{y})
is open, and W = Y \ {x, : n < w} is not open. This means that there exists
$=(Sn)n<w € 737; such that, for every m < w,

(**) S Ny :n <w} # 0.

We want to show that h ¢ G(y,s,k). Assume that for an m < w, h €
B(y, s, k,m). This means that h € ({B(y,s,k,m, F) : F € [ySm]<“}. Because
of (**), there is x4y € Sp,. Take F' = {x¢,y}. Our hypothesis implies that h must
belong to B(y, s, k,m, F). But this means that |h(x;) — h(y)| < 1/2*, which con-
tradicts (*). So, we have to conclude that G = C'(X, I).

Thus, the complement of G in IY is equal to

U U Uu "\, sn));

yeY’ seP; n<w

that is, IY \ G is the union of < |Y'|- fn(P’) - w sets M, (a < |Y'|- fn(P’) - w)
each of them being the countable intersection of sets of the form IY \ B(y, s,n, m).

We have that IY \ B(y,s,n,m) = I¥ \ ({{B(y,s,n,m,F) : F € [ySm]<*} =
U{IY \ B(y,s,n,m,F) : F € [yS,]<“}. That is, each M, is a set of the form
Nin<w Urepys, <o (IY \ B(y, s,n,m, F). But this means that M, is an F}y|s-set in
IY. Now, Corollary 3.4 in [OT] guaranties that kcov(M,) < kcov(|Y|*), so IY \ G
is the union of < |Y'| - fn(P’) - kcov(|Y|*) compact subsets of IY. That is,

C(CH(X, 1)) <|Y'|- fu(P') - keov([Y|*) < fn(P) - keov(ee(X)¥). O

A space X is weakly-quasi-first-countable if it has a sequential base with fan num-
ber < Ng. In particular, every first countable space is weakly-quasi-first-countable.
In fact, for each € X, we take a countable local base B, = {B, : n < w} of
x in X satisfying B, 41 C B, for every n. The collection P = |J,x B plus the
assignment z — B, constitute a sequential base for X, and fn(P) = 1. Theorem
5.3 implies:

5.4. Corollary. If X is a non-discrete weakly-quasi-first-countable space (in par-
ticular, if X is first countable), then

ec(X) -0 < C(Cp(X, I)) < keov(ec(X)).
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5.5. Corollary. If X is a non-discrete weakly-quasi-first-countable space (in par-
ticular, if X is non-discrete and first countable) of cardinality < w,, then

C(Cp(X, 1)) = ec(X) - 0.

Proof. This is a consequence of the previous result and Proposition 3.6, Corollaries
4.8 and 4.12in [OT]. O

5.6. Problem. Does every Fréchet-Urysohn space X have a sequential base P
with the property fn(P) < kecov(ec(X)¥)?

The following result is Theorem 2.7 in [S].

5.7. Theorem. The following are equivalent for a space X and any cardinal 7:

(1) X is a quotient of a metric space having cardinality 7.
(2) |X| <7 and X has a sequential base P such that fn(P) < .

As a consequence of this last result and Theorem 5.3, we have:

5.8. Corollary. If a non-discrete space X is the quotient of a metric space of
cardinality T, then

ec(X) -0 < C(Cp(X, ) < 7 - keov(ec(X)“).

Let X be a sequential space and x € X. A base of sequences centered in x is a
collection S of sequences in X\ {x} converging to = and such that, for each sequence
(Yn)n<w in X \ {z} which converges to x, there is a sequence (zn)n<w € S such that
Hzn :n < w}N{y, : n <w}| = Ny. Denote by Seq(X,x) the minimum element
in {|S| : S is a base of sequences centered in xz}. Let Seq(X) = sup{Seq(X,z) :
x € X}. It is possible to prove that every sequential space X has a sequential base
with fan number < Seq(X); so the following result follows from Theorem 5.3.

5.9. Corollary. For every non-discrete sequential space X we have

ec(X) -0 < C(Cp(X, I) < Seq(X) - keov(ec(X)“).

6. THE CECH NUMBER OF C,(X) WHEN X IS A k-SPACE

6.1. Definition. A family D of closed subsets of a space X determines the topology
of X if FFC X is closed in X iff F N D is closed in D for every D € D.

Note that for a collection D of closed subsets which determines the topology
of X, X \ UD is discrete and clopen, and every base for the closed subsets of X
determines the topology of X. Furtheremore, D = @) or D = {0} determines the
topology of X iff X is discrete.

6.2. Lemma. Let D be a collection of closed subsets of a topological space X which
determines its topology. Let Y be a topological space. A function f : X — Y is
continuous if and only if f [ D is continuous for every D € D.

Proof. Evidently, if f : X — Y is continuous, f [ D is continuous. Now, assume
that g : X — Y is a non-continuous function; so there exists a closed subset F' of Y’
such that g7![F] is not a closed subset of X. This means that there is D € D for
which DN g™ [F] = (g | D)"![F] is not closed in D. But this implies that g | D is
not a continuous function. [
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6.3. Theorem. Let D be a collection of closed subsets of a non-discrete space X
which determines the topology of X. Then C'(Cp(X,I)) < |D|-suppepC(Cp(D, I)).

Proof. For each D € D, denote by xp the cardinal number C(C,(D,I)), and
let {VP : X < kp} be a collection of open sets in I” such that C,(D,I) =
Nacwp V2. For each o < kp we take the set WP = IX\P x VP Then,
Co(X, 1) = Npep Nacry WP, We obtain the conclusion of the Theorem because
each WP is an open subset of IX. [

For a k-space X we denote by K(X) a collection of compact subsets of X which
determine the topology of X with the smallest possible cardinality, and we denote
with k(X) the cardinality of IC(X).

6.4. Corollary. C(Cy(X,1)) < k(X) - supKe,C(X)C’(Cp(K, 1)) for every non-dis-
crete k-space X.

If for each point = in a sequential space, S, is a base of sequences centered in z,
and S = U cx Se, then {{z, : n <w}U{z}: (#n)ncw € Sz, € X} determines
the topology of X. Then:

6.5. Corollary. For a non-discrete sequential space X,
ec(X) -0 < C(Cy(X, 1)) < Seq(X) - ec(X) - 0.

This last result improves Corollary 5.9. In particular, if ¥ is an almost dis-
joint collection of subsets of w, and ¥(X) is the Mrowka space determined by X,
C(Cp(T(X), 1)) = ||+ 2. Also, we obtain C(Cp(V (Rg), I)) = 2 where V(Rg) is the
Fréchet fan.

Every countable compact space is a separable metrizable space, so, by the remark
made after Theorem 4.2, C(C,(K, I)) = 0 for any non-discrete countable compact
space K. Also, by Theorem 4.2, every non-discrete countable and sequential EG-
space X satisfies C(Cp(X, I)) = 0. As was noted to the authors by O. Okunev, not
every countable EG-space is sequential. In fact, in [Ar] it is proved that Cp(I) is
not sequential (Lemma I1.3.1). In this proof, it was considered a countable discrete
subspace {f, : n < w} of Cp(I) such that X = {f,, : n <w}U{0} is not sequential,
where 0 is the constant function equal to 0. So X is a countable EG-space which is
not sequential. Even more: X does not contain a non-trivial convergent sequence.
On the other hand, every countable k-space is sequential. Then, for every countable
k-space we have:

6.6. Corollary. For every non-discrete countable k-space X,
2 < C(CH(X, 1)) < k(X) -0 < Seq(X) -2.

We define 6 as the smallest infinite cardinal number such that if (X,7) is a
countable sequential non-discrete space, there is a sequential base P in X such that

fn(P) < 6.
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6.7. Proposition. Let (X,7) be a Fréchet-Urysohn space. There is a sequential
base P of X such that fn(P) < 8- kcov(ec(X)?).

Proof. Let Y be a clopen subspace of X with |Y] = ec(X) and such that X \
Y is discrete. Considering Y with its discrete topology, Y can be covered by
kcov(ec(X)®)= X compact subsets K,: Y = J, ., Ko We may and shall assume
that each K, is of the type Hn<w Ko n, where K, , is a finite subset of Y. Fix
y € X, non isolated in (X, 7). If (by)n<w is & sequence in Y converging to y with
by, # by, if n # m, then there is § < A such that

(1) yed(|J (Kon\{v}).

nw

As a subspace of (X, 7), U, .., (Ksn \ {y}) is sequential and countable, so there
is a sequential base Pgs,, of | J, ., (Kpn \ {y}) such that

(2) fn(Psy) < 0.

Now, we shall consider

(3) P= U{Pﬁyy : B and y satisfy (1)} U {{z}:2 & X'},

and for each y € X’ we take Py = {(Pn)n<w : (Pn)n<w € Pay}, and for y & X', let
Py = {(Pn)n<w} where P, = {y} for every n < w.

Claim: P, with the assignment y — P, constitutes a sequential base of (X, 7).

Conditions (1) and (2)(=-) in Definition 5.1.(a) are evident for this P and this
assignment y — P,. Now, let V' C X be such that for every z € V and (P,)n<w €
P, there exists m such that P,, C V. We have to prove that V is open. Assume the
contrary. Thus, X\V isnot closed in (X, 7), so there is a sequence of points in X\ V',
(bn)n<w, converging to some y € V. Fix # < X such that (by)n<w € [[,co, Kpn-
Since Pg,y is a sequential base, V N (U, ., Ksn U {y}) is open in the subspace
Un<w Kpn U {y}. Hence, there is Q € 7 such that

(4) vl K Ufyh) =n (| Ksn U {yh)

n<w n<w

Since y € V, y € Q. Then, there is mg such that b,, € Q for every m > my.
But this means that b,, € V for every m > myg, which contradicts the choice of
(bn)n<w- So, V must be open, and P with the assignment y — P, is a sequential
base of (X, 7).

Moreover, |Py| < 8-\ for every y € X. O

6.8. Corollary. Let X be a non-discrete Fréchet-Urysohn space. Then,

ec(X) -0 < O(Cp(X, I) < 0 - keov(ec(X)*).
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7. C(Cp(X)) FOR COUNTABLE SPACES X

Recall that a separable completely metrizable space is called a Polish space; every
subspace X of a Polish space which is a continuous image of a Polish space is called
analytic (that is equivalent to saying that X is the continuous image of the space of
irrational numbers with the topology inherited by the real line). A subspace Y of
a Polish space X is called co-analytic if X \'Y is analytic. A separable metrizable
space is co-analytic if it is homeomorphic to a co-analytic set in a Polish space.

7.1. Proposition. If X is a Polish space and F C X is co-analytic, then C'(F) < 0.

Proof. We have that X \ F is analytic, so it is a continuous image of P. Then
C(F) =kcov(X \ F) < keov(P) =0. O

The following result is Corollary 21.21 in [Ke]

7.2. Theorem. Let X be a separable metrizable co-analytic space. Then X is
Polish if and only if it contains no closed subset homeomorphic to Q.

7.3. Proposition. Let X be a Polish space and let F' C X be co-analytic. If F' is
not Polish, then C(F) = 0.

Proof. By Proposition 7.1, C(F) < d. Now, since F is not Polish it contains a
closed copy of Q. Hence, 2 = C(Q) < C(F). O

If X is a countable space, then Cp(X,I) is a separable metrizable subspace of
the Polish space I“. Moreover, if X is not discrete, Cp(X,I) is not completely
metrizable; so, in particular, if Cp,(X, I) is co-analytic it must contain a closed copy
of Q. Following this line of thoughts we get the following:

7.4. Theorem. If X is a countable non-discrete EG-space, then C(Cp(X,I)) = .

Proof. Theorem 4.2 gives us C(C,(X,I)) < 0. On the other hand, by Proposition
4.5, Cp(X, I) is co-analytic. Since X is not discrete, C,,(X, I) is not a Polish space.
Hence, Cp(X,I) contains a closed copy of Q (Theorem 7.2). This implies that
2 < C(Cy(X,T)). O

Of course, there are countable EG-spaces which are not metrizable. One way to
construct such spaces is as follows: Let A be a dense countable subset of Cp([0, 1]).
A is a countable EG-space, and A is not metrizable.

On the other hand, it is possible to give an example of a countable space which
is not a EG-space. The Fréchet fan V(Xy) is a classic example.

7.5. Lemma. Let a € X and let {V,, : @ < k} be a fundamental system of neigh-
borhoods of a in X. Let Hy = (., Upee, Uaern(IX\Ve x EVe) (see Notations
5.2). Then, H, is the set of all functions from X into I continuous at a.

Proof. Let g : X — I be continuous at a. For each n < w there is E € &, such that
g(a) € E and, since g is continuous at a, there is 8 < x such that g[V3] C E, hence
geIX\Vs x EVs and g € H,.

On the other hand, let h € IX be a non continuous function at a. Hence, there
is n < w with the property

() h[Vo] € (h(a) = (1/2"F1), h(a) + (1/2771))
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for all « < k. If E € &,, the length of E is < 1/2""!. Because of (*), h ¢
IX\Ve x EVe for all E € &,, which implies h ¢ H,. O

For a € X, denote by A(X,a) the cardinal number min{|V| : V is open and
a €V}, and let A(X) =sup{A(X,a):a€ X}.

7.6. Corollary. For every non-discrete space X,
ec(X) < C(Cy(X, 1)) < ec(X) - keov(x (X)),

Proof. Let Y be an essential subspace of X of cardinality ec(X) (X \'Y is discrete
and clopen). Let k = x(Y), and for each y € Y, {V}, o : @ < k} be a fundamental
system of neighborhoods of y in Y. Because of Lemma 7.5,

v = ) U Y Wee s gt

yeY n<w E€E,, a<k

On the other hand,

TIXWya 5 V0 — m (IX\Me} 5 plohy,

bEVy a

So,
U U (Ix\vy,a x EVve) = U U m (IX\{b} ~ E{b}).
Ee€E, a<lk EcE, a<rbeVy o

Let us call this last set G,. Since XM} x E{%} is an open set in IV, |€,| < Ry and
k<x(Y), Gyisa GA)x(v)-set- Then C(Gy) < kcov(x(Y)z(Y)) (Corollary 3.5
in [OT)). So C(Cp(X, 1)) = C(Cp(Y, 1)) < ec(X) - keov(x(Y)AM)) (Corollary 1.11
in [OT]). But x(Y) = x(X) and A(Y) = A(X); so, we have finished the proof of
this corollary. O

7.7. Corollary. For every countable space X, C(Cy(X, 1)) < kcov(x(X)®).

In [LMP], Lutzer, van Mill and Pol defined for each subset S of the Cantor set
2“ a topological space Xg as follows: let T;, = 2™ be the set of functions from
{0,1,...,n— 1} into {0,1}. Let T = |J,,»; I» and partially order T' by function
extension. A branch of T is a maximal linearly ordered subset of T, i.e., a linearly
ordered subset B C T having |[BNT,| = 1 for each n > 1. Given x € 2%, the
set By = {(2(0)), (z(0),z(1)), (x(0),2(1),2(2)), ...} is a branch of T. Conversely,
each branch B of T has the form B = B, for a unique x € 2¥. For each subset
S C 2%, the collection {T'\ (By, U...UB;, UF):n>1,2;€ Sand F € [T]<“} is
a filter base. Let ps be the filter generated by that filter base. Let Xg = T U {ps}.
Topologize Xg by isolating each point of 7" and by using the family {P U {ps} :
P € pg} as a neighborhood base at pg. All spaces g are Fréchet (the sequence
(1),(0,1),(0,0,1),(0,0,0,1),... converges to pg). So:

7.8. Proposition. For every S C 2,

2 < C(Cy(Es)) = C(C,(Ss, 1)),
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7.9. Proposition. If S C 2“ is a co-analytic subset of 2*, then d = C'(Cp(Xg)) =

C(Cp(Xs,I)).

Proof. Since S is co-analytic in 2¢, then C,(3g,I) is co-analytic in I=s ([LMP],
Theorem 3.1); so, 175 \ Cp(Xg, I) is analytic. This means that

kcov(I™$ \ Cp(Xs,I) < 0.

Therefore, C(Cp(Xs,1)) < 0. By Proposition 7.8, we must have C(Cp(Zg, 1)) =
0. O

For each filter F on w, we define the space Xz = w U {F} with the following
topology: each point in w is isolated and a basic system of neighborhoods for F are
the sets of the form {F} U F' where F € F.

In [C], Jean Calbrix considers, in addition to spaces of type X g, countable spaces
constructed as follows: Let X be a non-discrete metrizable separable space which
contains a countable dense set w where each of its points is isolated. Let A = X \ w.
We identify A to a point p and we obtain the quotient space Xz = w U {p}, where
F is the filter in w generated by the trace in w of the basic system of neighborhoods
of p in Xz. Calbrix called this kind of filters as filters of type A. He proved also
that every countable k-space with only a non-isolated point is Fréchet-Urysohn ([C],
Lemma 2.1), and he mentions that for every filter F of type A, Xz is a sequential
space. Thus for this kind of spaces, we have:

7.10. Corollary. For an A-filter F, d < C(Cp(Xr, 1)) < |X|-0. In particular, if

Proof. This is a consequence of Corollary 5.8. [

The final remarks of this section are due to a colleague. We truly thank him for
his comments.

It is consistent with ZFC' that there is a countable space X such that 0 <
C(Cp(X,I)). Indeed, let S be a Bernstein set in the Cantor set 2% (that is, both S
and 2¢\ S do not contain perfect subsets of 2*). Since all compact subsets of S and
2@\ S are countable and |S| = [2¥\ S| = 2%, we have that kcov(S) = C(S) = 2“.
Now, consider the corresponding space X g defined in some paragraphs above. Since
Yg is countable, kcov(w!®s!) = v. From the fact that C(Xg) contains a closed copy

of S ([LMPY]), it follows that kcov(Cp(Xs)) = C(Cp(Xs)) = 2¢.

This example also shows that the strict inequality in Corollary 2.7 and the rela-
tion C'(Cp(X,I)) > kcov(ec(X)') (see Theorem 3.2) can consistently happen.

Since for every metrizable and separable space X, |X| < 2¥, if 0 = 2%, then
equalities in Corollary 7.10 hold. On the other hand, assume that 0 < 2“ and let
X be an uncountable compact metrizable space containing a countable dense set w
consisting of isolated points. Then X is homeomorphic to a convergent sequence.
Hence, C(Cp(XF, 1)) =0 < 2¢¥ = | X]|.

8. RELATIONS BETWEEN C(C,(X)) AND
OTHER CARDINAL TOPOLOGICAL FUNCTIONS

For each space X we define nov(X) = min{|C| : C is a cover of X constituted by
nowhere dense subsets of X}, and, if X is realcompact, Exp(X) = min{x : X can
be embedded as a closed subset of R"}. We also consider M = min{7 : nov(I") = 7}
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8.1. Lemma. ([vD], Lemma 8.19) Let X be a separable metrizable space (or more
generally, a space that has a perfectly normal compactification) that is not locally
compact. Then Exp(X) = kecov(bX \ X) for each compactification bX of X.

8.2. Corollary. Let X be a non-discrete countable space. Then, C’(CP(X, 1) =
Ezp(Cy(X, 1)).

We always have that w; < 91 < nov(R) <0 ([M]), and Martin’s Axiom implies
N = c. The following result can be proved similarly to Theorem 5.3 in [OT].

8.3. Proposition. If X is a non-discrete countable space, then C(C,(X,I)) >
nov(R).

8.4. Lemma. For every cardinal number 7 > w, nov({0,1}7) = nov([0, 1]7).

Proof. 1t is well known that there is an onto continuous irreducible map G :
{0,1}7 — [0,1]". If S C {0,1}" is closed and nowhere dense, then G[S] is closed
and nowhere dense. And for each closed and nowhere dense subset S C [0,1]7,
G~1[9] is nowhere dense. Therefore, nov({0,1}7) = nov([0,1]7). O

In [OT] it is asked if nov(R) is equal to M = min{7 : nov(I") = 7} (JOT],
Question 5.2). It was proved in [M] that it is consistent with ZFC' that nov(R) = Rq
and nov({0, 1}**) = wy. This proves, using Lemma 8.4, that the answer to Question
5.2 in [OT] is consistently negative.

It is easy to prove that C(Cp(X,I)) > C(Cp(X,{0,1})) > nov(I") for every
non-discrete 0-dimensional space X, where 7 = ec(X).

In [OT] it is asked what the Cech number of the ¥-product of w; copies of [0, 1]
is; and it is remarked that the relation wy < C’(ZI‘“I) < 0 holds. Observe that
Y1t and I*t \ ©I“' are dense subsets of 1“1, so nov(I“t) < C(XI“!). On the
other hand, ¥(0,1)** = Cp(Y), where Y is the one point Lindel6fication of the
discrete space of cardinality wi. Moreover, 3(0,1)* =, Ax where A\ = {f €
Y19 : f(A\) € (0,1)}. Since Ay is an open subset of X711, ¥(0, 1) is a G, -set of
Y I%t. This means that C(3(0,1)%*) < wy - C(XI) (see Proposition 1.12 in [OT]).
On the other hand, ¥7“" is a closed subset of ¥R“!. So, we have:

8.5. Proposition. w; < nov(I*t) < C(XIt) = C(IR“1) < keov((wy)*¥) = 0.

By the way, ec(XI“') = ¢, then, using Corollary 4.8 in [OT] we know that

C(Cp(XI*¥,I)) > ¢. Moreover, Kombarov proved in [Ko] that the tightness of
$I%1 is Vg, so, by Theorem 3.2, ¢ > C(Cp(X1%1,I)). In summary:

8.6. Proposition. C(C,(X1“1, 1)) =c.

9. THE CECH NUMBER OF C},(X) AND
ADDITIONAL AXIOMS CONSISTENT WITH ZF'C

Let X be a nondiscrete space. We know that C'(Cp(X)) > wy; so, CH implies
that C'(C,(X)) > ¢. We get the same conclusion if we assume M A: Let w < k < c.
M A(k) implies that if (Q4)a<x is a family of open dense subsets of RX, then
No<r Qa is dense in RX.
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9.1. Proposition. If we assume M A(x) and X is not discrete, then C(Cy(X)) > .

Proof. Assume that C'(Cp(X)) < k. We may assume that ec(X) = | X|. Then, |X|
must be < k. We have C,(X) =, Qo and Q, is an open subset of RX

Fix fo : X — R non continuous (it exists because X is not discrete). fo+ Cp(X)
and Cp(X) are dense in RY, W, = fo + Q, is open and dense in R¥ for each
a < k; hence (fo + Cp(X)) N Cp(X) is not empty, which implies that fo would be
continuous; a contradiction. [

9.2. Corollary. M A(k) implies k <.

Proof. If M A(k) and x = 0, then for every non-discrete space X, C(Cp(X)) > 0
(Proposition 9.1). But this is not the case, for example, C(C,([0,w])) =0. O

Martin Axiom is equivalent to M A(k) for every k < ¢. (Also M A implies ? = c,
see Theorem 5.1 in [vD]) Then, by Proposition 9.1, we get:

9.3. Corollary. If we assume M A and X is not discrete, then C(Cp(X, 1)) > ¢ =
0.

Proof. Let Y be a clopen subset of X such that |Y| = ec(X) and X \ 'Y is discrete.
We have that C(Cp(X, 1)) = C(Cp(Y,I)) = C(Cp(Y)). Since Y is not discrete,
Proposition 9.1 guaranties that C(Cp(Y)) >0 =¢. O

We will finish this section proving that it is consistent with ZFC the existence

of a countable space X for which w1 = C'(Cp(X,I)) < 0.
9.4. Proposition. Let ¢ € w* and consider the set X =w U {q} as a subspace of

Proof. Let g : X — I non continuous; then it is not continuous at ¢ and there is
w > m > 1 such that

9 [(9(q) — 1/m,g(q) + 1/m)] € q.

Since ¢ is an ultrafilter, then U = X \ g7 ![(g9(q) — 1/m, g(q) +1/m)] € q. So, t € U

implies |g(t) — g(q)| = 1/m.
Let B be a local base of ¢ in Sw of cardinality x(q, 8(w)). We have that

e n = | Ut e X 15w - flg) > 1/m ¥t e U,
1<mUeB
Claim. Fy,, = {f € I*X :|f(t) — f(¢)| > 1/mV t € U} is closed in I*X.

Indeed, assume h € cl(Fym) \ Fu.m; then, there is b € U such that |h(b) —
h(q)| < 1/m. Choose ri,72 > 0 such that r1 + r2 + |h(b) — h(¢)| < 1/m, and
consider V' = [[ .y V& the open neighborhood of h where V,, = I if x & {q,b},
Vo = (h(b) — 71, h(b) + r1) and V; = (h(¢) — r2, h(q) + 72). Choose f € Fy ., NV;
it follows that | f(b) — h(b)| < r1 and |f(q) — h(q)| < r2. Thus, we have

1/m > [h(b) = h(q)| + 71+ 712 > |f(b) — f(g)| > 1/m,
which is a contradiction. 0O

The following example answers question 5.1 in [OT] in the affirmative.
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9.5. Example. There is a model M of ZFC' containing a countable space X with
the property C(Cp(X,I)) = w1 < 3. (We thank Professor Frank Tall for his concern
to this problem and for leading us to [BS]).

Proof. In [BS] it was proved that there is a model M of ZFC in which there is a
free ultrafilter ¢ with x(g, B(w)) = Ry and d = Vy. So, in M, C(Cp(w U {q},I)) =
N <0, O
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