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ON THE ČECH NUMBER OF Cp(X)
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Abstract. We discuss the Čech numbers of the spaces Cp(X) and Cp(X,I) (where

the Čech number of a space Z is the pseudocharacter of Z in βZ). We establish the

relation between the Čech numbers of Cp(X) and of Cp(X, I), find some upper and

lower bounds for the Čech number of Cp(X,I) in terms of the cardinal functions of

X , and discuss the minimal possible infinite value that the Čech number of Cp(X,I)
can have.

All spaces considered in this paper are assumed Tychonoff. Given two spaces X
and Y, we denote by Cp(X,Y ) the space of all continuous functions from X to Y
equipped with the topology of pointwise convergence (that is, the topology of the
subspace of the set of all functions from X to Y , Y X , with the Tychonoff product
topology). The space Cp(X,R) is denoted as Cp(X).

The symbols ω, N+, R, I, Q and P stand for the set of all naturals, all positive
naturals, the real line, segment [0, 1], the space of the rationals and the space ωω

(homeomorphic to the space of irrationals in R). We assume that all cardinals are
equipped with the discrete topology (so the expression τλ means the Tychonoff
product of λ copies of a discrete space of cardinality τ ). The symbol c denotes the
cardinality of continuum.

A classical theorem of D.J. Lutzer and R.A. McCoy [LM] says that Cp(X) is
Čech complete if and only if X is countable and discrete. V.V. Tkachuk observed
in [Tk, Theorem 1.13] that Cp(X, I) is Čech complete if and only if X is discrete,
thus, if and only if Cp(X, I) = IX (naturally, many arguments in this paper are
modifications of the proofs in [LM] and [Tk]). It seems natural now to ask: Given
a space X, how many open sets are necessary to intersect in RX (or IX ) to obtain
Cp(X) (or Cp(X, I))?. The above statements show that the answer is never ω.

1. The Čech number.

Recall that if A ⊂ X, then the pseudocharacter of A in X is defined as

Ψ(A,X) = min{|U| : U is a family of open sets in X and A =
⋂

U }.

Note that either Ψ(A,X) = 1 or Ψ(A,X) is infinite.
If τ is a cardinal, and A is a set in a space X, we say that A is of type Gτ (or a

Gτ -set) in X if Ψ(A,X) ≤ τ . Similarly, we say that A is of type Fτ (or an Fτ -set)
if A is a union of at most τ closed sets in X (that is, Ψ(X \A,X) ≤ τ ).
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The unions of at most λ Gτ sets are called Gτλ-sets, and the intersections of at
most λ Fτ sets are called Fτλ-sets; following the tradition, we use the symbols σ
for countable unions and δ for countable intersections.

1.1. Definition. The Čech number of a space X is

Č(X) = Ψ(X, βX).

Obviously, Č(X) = 1 if and only if X is locally compact, and Č(X) ≤ ω if and
only if X is Čech complete.

Define the k-covering number of a space Z as

kcov(Z) = min{|K| : K is a compact cover of Z }.

Obviously, kcov(X) ≤ τ if and only X is an Fτ set in any space that contains
X.

The next statements are immediate:

1.2. Proposition. Č(X) = kcov(βX \X).

1.3. Proposition. If Y is a closed subspace of Z, then kcov(Y ) ≤ kcov(Z).

1.4. Proposition. If f : Z → Y is a continuous mapping, and f(Z) = Y , then
kcov(Y ) ≤ kcov(Z).

1.5. Proposition. If f : Z → Y is a perfect mapping, and f(Z) = Y , then
kcov(Y ) = kcov(Z).

1.6. Proposition. Always kcov(X × Y ) = kcov(X) · kcov(Y ).

The fact that for any perfect mapping p : X → Y , p∗(βX \X) = βY \ Y where
p∗ : βX → βY is the continuous extension of p, together with Proposition 1.5 and
Proposition 1.2 yields

1.7. Proposition. If Y is a perfect image of X, then Č(X) = Č(Y ).

We now can prove that (just like for the Čech completeness) we can use any
compactification instead of βX to calculate the Čech number:

1.8. Proposition. Let bX be a compactification of X. Then Č(X) = Ψ(X, bX) =
kcov(bX \X).

Proof. The equality Ψ(X, bX) = kcov(bX \X) is trivial.
Let i∗ : βX → bX be the continuous extension of the identity mapping i : X →

X. Then i∗(βX \X) = bX \X, and the restriction of i∗ to βX \X is perfect, so
Č(X) = kcov(βX \X) = kcov(bX \X) = Ψ(X, bX). �

1.9. Proposition. If Y is a closed subspace of X, then Č(Y ) ≤ Č(X).

Proof. Let bY be the closure of Y in βX, and let U be a family of open sets in βX
such that |U| = Č(X) and X =

⋂
U . Then V = {U ∩ bY : U ∈ U } is a family of

open sets in bY such that Y =
⋂

V, and |V| ≤ Č(X). �
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1.10. Proposition. If {Xα : α ∈ A } is a family of spaces and
∏
{Xα : α ∈ A } is

not locally compact, then

Č
(∏

{Xα : α ∈ A }
)

= |A| · sup{ Č(Xα) : α ∈ A }}.

Proof. Since Č(Y ×K) = Č(Y ) holds for every space Y and every compact space
K, we can assume, without loss of generality, that Xα is not compact for every
α ∈ A.

Let X =
∏
{Xα : α ∈ A }. Since bX =

∏
{ βXα : α ∈ A } is a compactification

of X, it is sufficient to verify Ψ(X, bX) = τ where τ = |A| · sup{ Č(Xα) : α ∈ A }.
First we prove that Ψ(X, bX) ≤ τ :

For every α ∈ A, fix a family Uα of open sets in βXα so that |Uα| = Č(Xα) and
Xα =

⋂
Uα. Put Vα = { p−1

α (U ) : U ∈ Uα } where pα : bX → βXα is the projection,
and V =

⋃
{ Vα : α ∈ A }. Then V is a family of open sets in bX, |V| ≤ τ , and

X =
⋂

V.
Now, we will verify that Ψ(X, bX) ≥ τ . By Proposition 1.9, we have that

Ψ(X, bX) ≥ sup{Č(Xα) : α ∈ A}.
Since X is not locally compact, Ψ(X, bX) ≥ ℵ0. So, to prove Ψ(X, bX) ≥ |A| it

is enough to verify that kcov(bX \X) ≥ |A| when A is infinite. Fix, for each α ∈ A,
aα ∈ (βXα \Xα) and bα ∈ Xα.

Let Z be the set of all points (zα)α∈A of bX whose α-th coordinate is equal to
either bα or aα for every α ∈ A, and at most for one α, zα = aα. It is easy to see that
every neighborhood in bX of the point b̃ = (bα)α∈A contains all but finitely many
points of Z. It follows that Z is homeomorphic to the one-point compactification
of the discrete space of cardinality |A|; hence, its intersection with bX \X (equal
to Z \ {b̃}) is closed and discrete in bX \ X. Thus, bX \X has a closed discrete
subspace of cardinality |A|. Since the k-covering number is hereditary with respect
to closed sets, it follows that kcov(bX \X) ≥ |A|. �

1.11. Corollary. If Xα : α ∈ A is a family of subspaces of a space X, then

Č
(⋂

{Xα : α ∈ A }
)
≤ |A| · sup{ Č(Xα) : α ∈ A }.

This follows from Proposition 1.9, Proposition 1.10, and the fact that the in-
tersection

⋂
{Xα : α ∈ A } is homeomorphic to a closed subspace of the product∏

{Xα : α ∈ A }.

In particular,

1.12. Proposition. If Y is a Gτ -set in X, then Č(Y ) ≤ τ · Č(X).

Proof. By Corollary 1.11, it is enough to verify that Č(G) ≤ Č(X) if G is open in
X. Let U be a family of open sets in βX such that |U| = Č(X) and X =

⋂
U , and

let G′ be an open set in βX such that G = G′ ∩X. Let bG be the closure of G in
βX, and put V = {G′ ∩ bG} ∪ {U ∩ bG : U ∈ U }. Then V is a family of open sets
in the compactification bG of G, G =

⋂
V, and |V| ≤ Č(X). �
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2. The relation between the Čech numbers of Cp(X) and Cp(X, I).

We start from the comparison of the Čech numbers of Cp(X) and Cp(X, I); as
we will see, the former is completely determined by the latter and the cardinality
of X.

First note that Cp(X, I) is a closed subspace of Cp(X), so Č(Cp(X, I)) ≤
Č(Cp(X)).

The following lemma is a consequence of Proposition 1.10.

2.1. Lemma. For every infinite cardinal τ , Č (Rτ ) = τ .

2.2. Proposition. If Č
(
Cp(X, I)

)
≤ τ , then there are disjoint clopen subspaces

X0 and X1 of X such that X = X0 ∪X1, |X0| ≤ τ , and X1 is discrete.

Proof. For a finite set A ⊂ X and a real number ε > 0 define the set

O(A, ε) = { f ∈ IX : |f(a)| < ε for all a ∈ A }.

Then the family
{O(A, ε) : A is a finite set in X, ε > 0 }

is a base for IX at the point 0 (the function equal to 0 at all points of X). Note
that O(A, ε) contains the set Z(A) of all functions in IX whose restrictions to A
are zero.

Let U be a family of cardinality τ = Č(Cp(X, I)) of open sets in Iτ such that
Cp(X, I) =

⋂
U . For every U ∈ U there is a finite set AU ⊂ X and an εU > 0 such

that O(AU , εU ) ⊂ U . In particular, Z(AU ) ⊂ U . Let B =
⋃
{AU : U ∈ U }. Then

|B| ≤ τ if τ is infinite, and B is finite if τ = 1. Furthermore, Z(B) =
⋂
{Z(AU ) :

U ∈ U } ⊂
⋂

U = Cp(X, I); hence, every function in IX whose restriction to B
is equal to 0, is continuous. In particular, the characteristic function of X \ B is
continuous, whence B is clopen in X. Besides, every function from X \ B to I is
continuous, because it is the restriction to X \ B of a function on X equal to 0 at
every point of B. Thus, X \B is clopen and discrete.

To end the proof, put X0 = B and X1 = X \B if τ is infinite, and X0 = ∅ and
X1 = X if τ = 1. �

Now all is ready to prove the main theorem of this section

2.3. Theorem. For every infinite space X, Č(Cp(X)) = |X| · Č(Cp(X, I)).

Proof. Since always Č(Cp(X)) ≥ Č(Cp(X, I)), we only need to prove Č(Cp(X)) ≥
|X| and Č(Cp(X)) ≤ |X| · Č(Cp(X, I)).

Suppose by contradiction that τ = Č(Cp(X)) < |X|. We have Č(Cp(X, I)) ≤ τ ,
so by Proposition 2.2, there is a clopen partition {X0, X1} of X such that |X0| ≤ τ
and X1 is discrete. Since |X| > τ , it follows that |X1| = |X|. We have

Cp(X) = Cp(X0) × Cp(X1) = Cp(X0) × RX1 ,

so RX1 is homeomorphic to a closed set in Cp(X), and

|X| = |X1| = Č
(
RX1

)
≤ Č(Cp(X)) = τ,
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a contradiction.

Let us now verify that Č(Cp(X)) ≤ |X| · Č(Cp(X, I)). Let S = R ∪ {−∞,∞}
be the compactification of R homeomorphic to I; then Cp(X,S) is homeomorphic
to Cp(X, I), so it is enough to prove that Č(Cp(X)) ≤ |X| · Č(Cp(X,S)). But
Cp(X) = RX ∩Cp(X,S), and the required inequality follows from Lemma 2.1 and
Corollary 1.11. �

3. K(τ, λ)-analytic spaces.

As we have seen, the calculation of the Čech number of a space reduces to the
calculation of the compact-covering number of its complement in a compactification;
for the spaces of the form Cp(X, I) we have IX as a natural compactification. We
will now introduce certain classes of spaces that arise naturally in the calculation
of the compact-covering numbers.

3.1. Definition. Let τ and λ be cardinals such that τ ≥ 1. We say that a space
X is K(τ, λ)-analytic if X is a continuous image of a closed subspace of a product
of τλ and a compact space.

Thus, for example, a space X is a K(1, λ)-space if and only if X is compact, X
is a K(τ, 1)-space if and only it is a union of ≤ τ compact spaces, and the class of
K(ω, ω)-spaces is exactly the class of all K-analytic spaces.

We denote the class of all K(τ, λ)-analytic spaces as K(τ, λ). Obviously, all
compact sets are K(τ, λ)-analytic for any τ ≥ 1, K(τ, λ) ⊂ K(σ, λ) if τ ≤ σ and
K(τ, λ) ⊂ K(τ, µ) if λ ≤ µ.

Since the k-covering number is not increased in continuous images, closed sub-
spaces and products with compact spaces, we have

3.2. Proposition. If X is K(τ, λ)-analytic, then kcov(X) ≤ kcov(τλ).

3.3. Proposition. Let τ and λ be infinite cardinals. The class K(τ, λ) is invariant
with respect to continuous images, closed subspaces, unions of families of cardi-
nality ≤ τ , products of families of cardinality ≤ λ, and intersections of families of
cardinality ≤ λ.

Proof. The invariance with respect to continuous images and closed subspaces is
immediate from the definition. The union of a family of cardinality ≤ τ of K(τ, λ)-
analytic spaces can be represented as the continuous image of a closed subspace of
the sum of τ copies of the product of τλ with a compact space, which is homeo-
morphic to the product of τλ with a compact space. The product of a family of
cardinality ≤ λ of K(τ, λ)-analytic spaces can be represented as a continuous image
(under the product mapping) of a closed subspace (the product of closed subspaces)
of the product of (τλ)λ = τλ with a compact space. Finally, an intersection of a
family of cardinality ≤ λ of K(τ, λ)-analytic spaces is homeomorphic to a closed
subspace of the product of this family. �

Remark. Assume that τ is smaller than the first weakly inaccessible cardinal. Then
ωτ contains a closed discrete space of cardinality τ [Myc]; it follows that the classes
K(τ, λ) and K(ω, λ) coincide whenever λ ≥ τ .
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3.4. Corollary. If X is an Fτλ-set in a compact space, then X is K(τ, λ)-analytic,
and hence kcov(X) ≤ kcov(τλ).

It is easy to see that in fact, K(τ, λ) is the minimal class of spaces that contains all
compact spaces and is closed with respect to closed subspaces, continuous images,
unions of families of cardinalities ≤ τ and products of families of cardinalities ≤ λ
(and also the minimal class of spaces that contains all compact spaces and is closed
with respect to continuous images and Fτλ-subspaces).

3.5. Corollary. If X is a Gλτ -set in a compact space, then Č(X) ≤ kcov(τλ).

Indeed, if X is a Gλτ -set in some compact space, then it is also Gλτ in its
closure in this space, hence, in some of its compactification, and the complement
of a Gλτ -set is an Fτλ-set.

In some cases, we can calculate the numbers kcov(τλ). Of course, always
kcov(τλ) ≥ τ . Now, kcov(ωω) = d (see, e.g., [vDou]; or we can consider this
equality as the definition of d).

3.6. Proposition. If ω ≤ τ < ωω, then kcov(τω) = τ · d.

Proof. We will prove the statement for τ = ωn by induction on n. If τ = ω = ω0, the
statement is true. Assuming that the equality is already proved for some τ = ωn,
we have, using cf(ωn+1) > ω,

ωω
n+1 =

⋃
{αω : α ∈ ωn+1},

and since for every α ∈ ωn+1 we have |α| ≤ ωn, we have represented ωω
n+1 as the

union of ωn+1 subspaces whose k-covering numbers do not exceed ωn · d. �

Similarly,

3.7. Proposition. For every infinite cardinal τ ≥ λ, kcov((τ+)λ)) = τ+ ·kcov(τλ).

and, somewhat more generally,

3.8. Proposition. If cf(τ ) > λ, then

kcov(τλ) = τ · sup{ kcov(µλ) : µ < τ}.

It is easy to see that kcov((ωω)ω) > ωω; the particular value of this number
obviously is very dependent on additional set-theoretic assumptions.

Obviously, kcov(cω) = c; we do not know the answer to the following:

3.9. Question. Is it true that kcov(dω) = d?

4. The Čech numbers for some Cp(X, I).

In this section we calculate the Čech numbers for some spaces Cp(X, I). Since
IX is a compactification of Cp(X, I), trivially, Č(Cp(X, I)) ≤ |IX | = 2|X|.
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4.1. Proposition. Let X be a space such that Cp(X, I) is an Fτλ-set in IX . Then

Č(Cp(X, I)) ≤ kcov((|X| · τ )λ).

Proof. If U is an open set in IX , then, since IX is compact and has the weight equal
to |X|, U is the union of at most |X| compact spaces, hence K(|X| · τ, λ)-analytic.
By Proposition 3.3, it follows that every Gλτ -set in IX is K(|X| ·τ, λ)-analytic, and
hence has the k-covering number less or equal to kcov

(
(|X| · τ )λ

)
. The statement

now follows from Proposition 1.8 and the fact that the complement of an Fτλ-set
is a Gλτ -set. �

For a space X, denote by X ′ the set of all nonisolated points of X.

4.2. Theorem. Let X be a subspace of Cp(Y ). Then

Č(Cp(X, I)) ≤ kcov
(
(|X| · kcov(Y ))kcov(X′)+ω

)
.

Proof. Let τ = kcov(Y ) and λ = kcov(X ′) +ω. By Proposition 4.1, it is enough to
prove that under the conditions of the theorem, Cp(X, I) is an Fτλ-set in IX .

Let X ′ =
⋃
{Kα : α ∈ λ } where each Kα is compact, and for every α ∈ λ let

Cα = { f ∈ IX : f is continuous at every point of Kα }.

Clearly,
Cp(X, I) =

⋂
{Cα : α ∈ λ },

so it suffices to prove that every Cα is an Fτδ-set in IX .
Since the k-covering number is not increased by finite products, countable unions,

closed subspaces and continuous images, and kcov(Z) ≤ τ implies that Z is an Fτ -
set in any larger space, the required statement follows from the next lemma. �

4.3. Lemma. Let X be a subspace of Cp(Y ), K a compact set in X, and let C be
the set of all functions in IX that are continuous at every point of K. Then there
is a family {Bmn : m ∈ N+, n ∈ N+ } of subsets of IX such that

(1) C =
⋂

m∈N+

⋃
n∈N+

Bmn, and

(2) for any m,n ∈ N+, Bmn is a continuous image of a closed subspace of
Y n × IX .

Proof of the lemma. For every n,m ∈ N+ let

Bmn = { f ∈ IX : there is (y1, . . . , yn) ∈ Y n such that |f(z) − f(x)| ≤ 1/m

whenever x ∈ K, z ∈ X, and |z(yi) − x(yi)| < 1/n, i = 1, . . . , n}

Claim 1. C =
⋂

m∈N+

⋃
n∈N+

Bmn.

The inclusion
⋂

m∈N+

⋃
n∈N+

Bmn ⊂ C is trivial. To prove the inverse inclusion, let

f0 ∈ C and m ∈ N+. We will find an n ∈ N+ so that f0 ∈ Bmn.
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For every x ∈ K there are nx ∈ N+ and points y1x, . . . , ynxx ∈ Y such that
the inequalities |z(y1x) − x(y1x)| < 1/nx, . . . , |z(ynxx) − x(ynxx)| < 1/nx imply
|f0(z) − f0(x)| < 1/2m. The sets of the form

Ux = { z ∈ X : |z(y1x) − x(y1x)| < 1/nx, . . . , |z(ynxx) − x(ynxx)| < 1/2nx }

x ∈ X, are open in IX and cover K. Let {Ux1 , . . . , Uxk} be a finite subfamily of
{Ux : x ∈ K } that covers K. Put n = 2(nx1 + · · ·+ nxk), and let ȳ = {y1, . . . , yn}
be a point in Y n such that each point yjxl , l ≤ k, j ≤ nxl is equal to at least one
of yi, i ≤ n.

Let us verify that f0 ∈ Bmn. Suppose x ∈ K and z ∈ X are such that |z(y1) −
x(y1)| < 1/n, . . . , |z(yn)−x(yn)| < 1/n. Then there is an l ≤ k such that x ∈ Uxl ,
and since n ≥ 2nxl and the set {y1xl, . . . , ynxl

xl} is contained in the set {y1, . . . , yn},
we have

|x(y1xl) − xl(y1xl)| < 1/nxl , . . . , |x(ynxl
xl) − xl(ynxl

xl)| < 1/nxl

and
|z(y1xl) − xl(y1xl)| < 1/nxl , . . . , |z(ynxl

xl) − xl(ynxl
xl)| < 1/nxl ,

whence |f0(x)−f0(xl)| < 1/2m, |f0(z)−f0(xl)| < 1/2m, and |f0(x)−f0(z)| < 1/m.

Claim 2. The set Bmn is a continuous image of a closed subspace of Y n × IX .
Let

Fmn = { (y1, . . . , yn, f) ∈ Y n × IX : |f(z) − f(x)| ≤ 1/m

whenever x ∈ K, z ∈ X, and |z(yi) − x(yi)| < 1/n, i = 1, . . . , n }.

Then Bmn is the image of Fmn under the projection to IX , and it is sufficient to
verify that Fmn is closed in Y n × IX .

Suppose (y0
1 , . . . , y

0
n, f0) ∈ (Y n × IX ) \Fmn. Then there are x0 ∈ K and z0 ∈ X

such that |z0(y0
i ) − x0(y0

i )| < 1/n, i = 1, . . . , n, and |f0(z0) − f0(x0)| > 1/m. The
set

U = { (y1, . . . , yn, f) ∈ Y n × IX :

|z0(yi) − x0(yi)| < 1/n, i = 1, . . . , n, and |f(z0) − f(x0)| > 1/m }

is then a neighborhood of (y0
1, . . . , y

0
n, f0) in Y n × IX disjoint from Fmn. �

Recall that a space X is an Eberlein-Grothendieck space (or an EG-space) [Arh1]
if X is homeomorphic to a subspace of Cp(K) for some compact space K. Note
that, in particular, all metrizable spaces are EG-spaces [Arh1].

4.4. Corollary. If X is an EG-space, then Č(Cp(X, I)) ≤ kcov
(
(|X|)kcov(X′)+ω

)
.

The compact EG-spaces are called Eberlein compact spaces [Arh1].

4.5. Corollary. If X is an Eberlein compact space (in particular, if X is a metriz-
able compact space), then Č(Cp(X, I)) ≤ kcov(|X|ω).

In particular,
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4.6. Corollary. If X is an Eberlein compact space, and |X| < ωω, then

Č(Cp(X, I)) ≤ |X| · d.

Recall that if Y ⊂ X, then a family B of open sets in X is called a external base
for Y in X if for every y ∈ Y and a neighborhood U of y in X, there is a B ∈ B
such that y ∈ B ⊂ U . The minimal cardinality of an external base for Y in X is
called the external weight of Y in X and is denoted as w(Y,X).

4.7. Corollary. Always Č(Cp(X, I)) ≤ kcov((|X| ·w(X ′, X))kcov(X′)+ω).

Call the essential cardinality of a space X, ec(X), the minimal cardinality of a
subspace of X whose complement is clopen and discrete. Thus, Proposition 2.2
says that

4.8. Corollary. ec(X) ≤ Č(Cp(X, I)).

Every space X has a subspace X0 such that |X0| = ec(X0) and X1 = X \X0 is
clopen and discrete; we have Cp(X, I) = Cp(X0, I)×Cp(X1, I) = Cp(X0, I)× IX1 .
Since IX1 is compact, Č(Cp(X, I)) = Č(Cp(X0, I)). It follows that in all the
statements in this section we can replace |X| by ec(X). Corollary 4.8 also gives us
the first lower bound for the Čech number of Cp(X, I).

4.9. Corollary. IfX is a σ-compact EG-space of cardinality c, then Č(Cp(X, I)) =
Č(Cp(X)) = c.

In particular,

4.10. Corollary. If X is an uncountable σ-compact metrizable space, then

Č(Cp(X, I)) = Č(Cp(X)) = c.

We will now establish another lower bound.

4.11. Lemma. Let S = {0} ∪ { 1/n : n ∈ N+ }. Then Č(Cp(S, I)) = d.

Proof. Corollary 4.5, Č(Cp(S, I)) ≤ kcov(|S|ω) = kcov(ωω) = d. On the other
hand, Cp(S, I) is an Fσδ set, hence Borelian in IS (a well-known fact, which also
easily follows from Lemma 4.3), which is not a Gδ-set. By the Hurewicz theorem
(see, e.g. Corollary 21.21 in [Kech]), Cp(S, I) contains a closed homeomorphic copy
of Q, so Č(Cp(S, I)) ≥ Č(Q) = kcov(P) = d. �

4.12. Corollary. If X contains a convergent sequence, then Č(Cp(X, I)) ≥ d.

Proof. Let T ⊂ X be a convergent sequence. Fix a countable set { fn : n ∈ ω}
of continuous functions from X to I that separates points of T , and consider the
diagonal product F = 4{ fn : n ∈ ω } : X → Iω . Obviously, the space Y = F (X) is
metrizable, and by the compactness of T , the restriction FT = F |T : T → F (T ) is a
homeomorphism. By the Dugundji Extension Theorem [Dug], there is an extension
operator ψ : Cp(F (T ), I) → Cp(Y, I), that is, a mapping ψ such that ψ(f)|F (T ) = f
for every f ∈ Cp(F (T ), I); it is easy to see from the construction of ψ in [Dug] that
ψ is continuous with respect to the topologies of pointwise convergence. Define
φ : Cp(T, I) → Cp(X, I) by putting φ(g) = ψ((F−1

T ◦ g)) ◦ F for all g ∈ Cp(T, I).
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Then φ is a continuous extension operator. The subspace φ(Cp(T, I)) of Cp(X, I)
is homeomorphic to Cp(T, I) under φ (the inverse mapping g 7→ g|T is continuous),
and is a retract of Cp(X, I) (with the retraction g 7→ φ(g|T )), hence is closed in
Cp(X, I). Therefore, Č(Cp(X, I)) ≥ Č(Cp(T, I)) = Č(Cp(S, I)) = d. �

4.13. Corollary. If X is a non-discrete metrizable space, then Č(Cp(X, I)) ≥ d.

4.14. Corollary. IfX is a σ-compact metrizable space, then either Č(Cp(X, I)) =
1 (if X is discrete), or Č(Cp(X, I)) = d (if X is countable non-discrete), or

Č(Cp(X, I)) = c (if X is uncountable).

Proof. If X is countable and not discrete, then Č(Cp(X, I)) ≤ d by Corollary 4.5
and Č(Cp(X, I)) ≥ d by Corollary 4.13.

If X is uncountable, then Č(Cp(X, I)) = c by Corollary 4.10. �

Since every infinite Eberlein compact space contains a convergent sequence (see
Theorem 3.3.6 in [Arh2]), and obviously, ec(X) = |X| for every infinite compact
space X, we get

4.15. Corollary. If X is an infinite Eberlein compact space, then Č(Cp(X)) ≥
|X| · d.

Combining this with Corollary 4.6, we obtain

4.16. Proposition. If X is an infinite Eberlein compact space, and |X| < ωω,
then Č(Cp(X, I)) = |X| · d.

The bounds we obtained for the Čech numbers of Cp(X, I) for Eberlein compact
spaces of cardinalities ωω and higher generally do not match, and we do not know
now how to obtain the exact numbers, or even whether the cardinality of an Eberlein
compact space X determines completely the Čech number of Cp(X, I).

It seems worth to mention also the following consequence of Corollary 4.13.

4.17. Proposition. If X is an infinite pseudocompact space, then Č(Cp(X, I)) ≥
d.

Proof. If X is infinite and pseudocompact, then there is a continuous mapping
F of X onto a non-discrete metrizable space M . By Theorem 7 in [Arh3], the
mapping F is R-quotient, and by Proposition 0.4.10 in [Arh2], the dual map-
ping F ∗ : Cp(M, I) → Cp(X, I) is a closed embedding. Hence, Č(Cp(X, I)) ≥
Č(Cp(M, I)) ≥ d. �

In the end of the section we find the Čech number of the function space for the
space P = ωω.

Recall that a space X is called analytic if it is a continuous image of P; a set A
in a second-countable space Z is coanalytic if its complement in Z is analytic.

4.18. Theorem. Č(Cp(P, I)) = c.

Proof. Since ec(P) = c, we have Č(Cp(P, I)) ≥ c by Corollary 4.8.
For every A ⊂ P let rA : Cp(P) → Cp(A) be the restriction mapping defined by

rA(f) = f |A. Denote Cp(X|A) = rA(Cp(X)) and Cp(X|A, I) = rA(Cp(X, I)).
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It is proved in [Ok] that for every dense A ⊂ P, the space Cp(X|A) is coanalytic
in RA. Since IA is closed in RA, the analyticity is preserved by closed subsets,
and Cp(P|A, I) = Cp(P|A) ∩ IA, the set Cp(X|A, I) is coanalytic in IA. Since
kcov(Z) ≤ kcov(P) = d for every analytic space Z, it follows that Cp(X|A, I) is a
Gd-set in IA.

Obviously, a function f : P → I is continuous if and only if its restrictions to
every dense countable set in P admits a continuous extension to P. In other words,

Cp(P, I) =
⋂

{ r−1
A (Cp(P|A, I)) : A is a countable dense subset of P}.

For every dense countable A in P, the preimage r−1
A (Cp(P|A, I)) of a Gd-set in

IA under the continuous mapping rA is a Gd-set in IP. Since there are c countable
dense sets in P, we obtain a representation of Cp(P, I) as the intersection of c of Gd

sets in a compact space IP, and hence Č(Cp(P, I)) ≤ c. �

4.19. Question. Let X be a metrizable analytic non-σ-compact space of cardi-
nality c. Is it true that Č(Cp(X, I)) = c?

5. What is the minimal infinite Čech number of Cp(X, I)?.

As we have already mentioned, it is an easy consequence of the results from [LM]
and [Tk] that ω is never the Čech number of a space Cp(X, I). It seems probable
from the results of the previous section that the minimal possible infinite value
of Č(Cp(X, I)) might be d, but we could not prove or disprove this. Thus, the
following question remains open:

5.1. Question. Is there a non-discrete space X such that Č(Cp(X, I)) < d?

We have found a lower bound for infinite values of Č(Cp(X, I)), which is consis-
tently equal to c, and hence is greater than any “given” cardinal.

Recall that the Novak number of a space X is

nov(X) = min{ |C| : X =
⋃

C and every element of C is nowhere dense in X }.

Let N = min{ τ : Iτ can be represented as a union of τ nowhere dense sets }.

Of course, always ω1 ≤ N ≤ c, and Martin’s Axiom implies N = c. Trivially,
N ≤ nov(R) ≤ d.

5.2. Question. Is it true that N = nov(R)?

5.3. Theorem. If X is a non-discrete space, then Č(Cp(X, I)) ≥ N.

Proof. Suppose there is a non-discrete space X with Č(Cp(X, I)) < N. By Propo-
sition 2.2, there is a clopen set X0 in X such that |X0| < N and X1 = X \X0 is
discrete. Then X0 is not discrete, and Cp(X0, I) is homeomorphic to a closed sub-
space of Cp(X, I), whence Č(Cp(X0, I)) ≤ Č(Cp(X, I)) < N. Thus, we can assume
without loss of generality that |X| < N. By Theorem 2.3, we get Č(Cp(X)) < N.

Since X is not discrete, there is a discontinuous function f0 ∈ RX . We have
then (f0 + Cp(X)) ∩ Cp(X) = ∅, so (RX \ Cp(X)) ∪ (RX \ (f0 + Cp(X))) = RX .
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Since Cp(X) is a dense set in RX that is the intersection of < N open sets, so is
f0 +Cp(X), and hence both RX \Cp(X) and RX \ (f +Cp(X)) are unions of < N

nowhere dense sets in RX . Thus, we have obtained a representation of RX with
|X| < N ≤ nov(R) as a union of < N nowhere dense sets, a contradiction with the
definition of N. �

We have already mentioned several open problems in the text. The next question
also seems very interesting, and not easily resolvable:

5.4. Question. What is the Čech number of ΣIτ ? (Here ΣIτ is the Σ-product of
τ copies of the segment I. Note that ΣIτ is homeomorphic to Cp(X, I) where X is
the one-point Lindelöfication of the discrete space of cardinality τ ).

In particular, what is the Čech number of ΣIω1? Is it equal to d?

Note that Corollary 4.8 and Corollary 4.7 yield τ ≤ Č(ΣIτ ) ≤ kcov(τω).
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