ON THE ČECH NUMBER OF $C_p(X)$

OLEG OKUNEV AND ANGEL TAMARIZ-MASCARÚA

Facultad de Ciencias, Universidad Nacional Autónoma de México

ABSTRACT. We discuss the Čech numbers of the spaces $C_p(X)$ and $C_p(X,I)$ (where the Čech number of a space Z is the pseudocharacter of Z in βZ). We establish the relation between the Čech numbers of $C_p(X)$ and of $C_p(X,I)$, find some upper and lower bounds for the Čech number of $C_p(X,I)$ in terms of the cardinal functions of X, and discuss the minimal possible infinite value that the Čech number of $C_p(X,I)$ can have.

All spaces considered in this paper are assumed Tychonoff. Given two spaces X and Y, we denote by $C_p(X,Y)$ the space of all continuous functions from X to Y equipped with the topology of pointwise convergence (that is, the topology of the subspace of the set of all functions from X to Y, Y^X , with the Tychonoff product topology). The space $C_p(X,\mathbb{R})$ is denoted as $C_p(X)$.

The symbols ω , \mathbb{N}^+ , \mathbb{R} , I, \mathbb{Q} and \mathbb{P} stand for the set of all naturals, all positive naturals, the real line, segment [0,1], the space of the rationals and the space ω^{ω} (homeomorphic to the space of irrationals in \mathbb{R}). We assume that all cardinals are equipped with the discrete topology (so the expression τ^{λ} means the Tychonoff product of λ copies of a discrete space of cardinality τ). The symbol \mathfrak{c} denotes the cardinality of continuum.

A classical theorem of D.J. Lutzer and R.A. McCoy [LM] says that $C_p(X)$ is Čech complete if and only if X is countable and discrete. V.V. Tkachuk observed in [Tk, Theorem 1.13] that $C_p(X,I)$ is Čech complete if and only if X is discrete, thus, if and only if $C_p(X,I) = I^X$ (naturally, many arguments in this paper are modifications of the proofs in [LM] and [Tk]). It seems natural now to ask: Given a space X, how many open sets are necessary to intersect in \mathbb{R}^X (or I^X) to obtain $C_p(X)$ (or $C_p(X,I)$)? The above statements show that the answer is never ω .

1. The Čech number.

Recall that if $A \subset X$, then the pseudocharacter of A in X is defined as

$$\Psi(A, X) = \min\{|\mathcal{U}| : \mathcal{U} \text{ is a family of open sets in } X \text{ and } A = \bigcap \mathcal{U}\}.$$

Note that either $\Psi(A, X) = 1$ or $\Psi(A, X)$ is infinite.

If τ is a cardinal, and A is a set in a space X, we say that A is of type G_{τ} (or G_{τ} -set) in X if $\Psi(A, X) \leq \tau$. Similarly, we say that A is of type F_{τ} (or an F_{τ} -set) if A is a union of at most τ closed sets in X (that is, $\Psi(X \setminus A, X) \leq \tau$).

¹⁹⁹¹ Mathematics Subject Classification. 54C35, 54A25.

Key words and phrases. topology of pointwise convergence, Čech number.

The unions of at most λ G_{τ} sets are called $G_{\tau\lambda}$ -sets, and the intersections of at most λ F_{τ} sets are called $F_{\tau\lambda}$ -sets; following the tradition, we use the symbols σ for countable unions and δ for countable intersections.

1.1. Definition. The $\check{C}ech$ number of a space X is

$$\check{C}(X) = \Psi(X, \beta X).$$

Obviously, $\check{C}(X) = 1$ if and only if X is locally compact, and $\check{C}(X) \leq \omega$ if and only if X is Čech complete.

Define the k-covering number of a space Z as

$$kcov(Z) = min\{|\mathcal{K}| : \mathcal{K} \text{ is a compact cover of } Z\}.$$

Obviously, $kcov(X) \leq \tau$ if and only X is an F_{τ} set in any space that contains X.

The next statements are immediate:

- **1.2. Proposition.** $\check{C}(X) = kcov(\beta X \setminus X)$.
- **1.3. Proposition.** If Y is a closed subspace of Z, then $kcov(Y) \leq kcov(Z)$.
- **1.4. Proposition.** If $f: Z \to Y$ is a continuous mapping, and f(Z) = Y, then $kcov(Y) \le kcov(Z)$.
- **1.5. Proposition.** If $f: Z \to Y$ is a perfect mapping, and f(Z) = Y, then kcov(Y) = kcov(Z).
- **1.6. Proposition.** Always $kcov(X \times Y) = kcov(X) \cdot kcov(Y)$.

The fact that for any perfect mapping $p: X \to Y$, $p^*(\beta X \setminus X) = \beta Y \setminus Y$ where $p^*: \beta X \to \beta Y$ is the continuous extension of p, together with Proposition 1.5 and Proposition 1.2 yields

1.7. Proposition. If Y is a perfect image of X, then $\check{C}(X) = \check{C}(Y)$.

We now can prove that (just like for the Čech completeness) we can use any compactification instead of βX to calculate the Čech number:

1.8. Proposition. Let bX be a compactification of X. Then $\check{C}(X) = \Psi(X, bX) = kcov(bX \setminus X)$.

Proof. The equality $\Psi(X, bX) = kcov(bX \setminus X)$ is trivial.

Let $i^*: \beta X \to bX$ be the continuous extension of the identity mapping $i: X \to X$. Then $i^*(\beta X \setminus X) = bX \setminus X$, and the restriction of i^* to $\beta X \setminus X$ is perfect, so $\check{C}(X) = kcov(\beta X \setminus X) = kcov(bX \setminus X) = \Psi(X, bX)$. \square

1.9. Proposition. If Y is a closed subspace of X, then $\check{C}(Y) \leq \check{C}(X)$.

Proof. Let bY be the closure of Y in βX , and let \mathcal{U} be a family of open sets in βX such that $|\mathcal{U}| = \check{C}(X)$ and $X = \bigcap \mathcal{U}$. Then $\mathcal{V} = \{U \cap bY : U \in \mathcal{U}\}$ is a family of open sets in bY such that $Y = \bigcap \mathcal{V}$, and $|\mathcal{V}| < \check{C}(X)$. \square

1.10. Proposition. If $\{X_{\alpha} : \alpha \in A\}$ is a family of spaces and $\prod \{X_{\alpha} : \alpha \in A\}$ is not locally compact, then

$$\check{C}\left(\prod\{X_{\alpha}:\alpha\in A\}\right)=|A|\cdot\sup\{\check{C}(X_{\alpha}):\alpha\in A\}\}.$$

Proof. Since $\check{C}(Y \times K) = \check{C}(Y)$ holds for every space Y and every compact space K, we can assume, without loss of generality, that X_{α} is not compact for every $\alpha \in A$.

Let $X = \prod \{ X_{\alpha} : \alpha \in A \}$. Since $bX = \prod \{ \beta X_{\alpha} : \alpha \in A \}$ is a compactification of X, it is sufficient to verify $\Psi(X, bX) = \tau$ where $\tau = |A| \cdot \sup \{ \check{C}(X_{\alpha}) : \alpha \in A \}$. First we prove that $\Psi(X, bX) \leq \tau$:

For every $\alpha \in A$, fix a family \mathcal{U}_{α} of open sets in βX_{α} so that $|\mathcal{U}_{\alpha}| = \check{C}(X_{\alpha})$ and $X_{\alpha} = \bigcap \mathcal{U}_{\alpha}$. Put $\mathcal{V}_{\alpha} = \{ p_{\alpha}^{-1}(U) : U \in \mathcal{U}_{\alpha} \}$ where $p_{\alpha} : bX \to \beta X_{\alpha}$ is the projection, and $\mathcal{V} = \bigcup \{ \mathcal{V}_{\alpha} : \alpha \in A \}$. Then \mathcal{V} is a family of open sets in bX, $|\mathcal{V}| \leq \tau$, and $X = \bigcap \mathcal{V}$.

Now, we will verify that $\Psi(X, bX) \geq \tau$. By Proposition 1.9, we have that $\Psi(X, bX) \geq \sup\{\check{C}(X_{\alpha}) : \alpha \in A\}$.

Since X is not locally compact, $\Psi(X, bX) \geq \aleph_0$. So, to prove $\Psi(X, bX) \geq |A|$ it is enough to verify that $kcov(bX \setminus X) \geq |A|$ when A is infinite. Fix, for each $\alpha \in A$, $a_{\alpha} \in (\beta X_{\alpha} \setminus X_{\alpha})$ and $b_{\alpha} \in X_{\alpha}$.

Let Z be the set of all points $(z_{\alpha})_{\alpha \in A}$ of bX whose α -th coordinate is equal to either b_{α} or a_{α} for every $\alpha \in A$, and at most for one α , $z_{\alpha} = a_{\alpha}$. It is easy to see that every neighborhood in bX of the point $\tilde{b} = (b_{\alpha})_{\alpha \in A}$ contains all but finitely many points of Z. It follows that Z is homeomorphic to the one-point compactification of the discrete space of cardinality |A|; hence, its intersection with $bX \setminus X$ (equal to $Z \setminus \{\tilde{b}\}$) is closed and discrete in $bX \setminus X$. Thus, $bX \setminus X$ has a closed discrete subspace of cardinality |A|. Since the k-covering number is hereditary with respect to closed sets, it follows that $kcov(bX \setminus X) \geq |A|$. \square

1.11. Corollary. If $X_{\alpha}: \alpha \in A$ is a family of subspaces of a space X, then

$$\check{C}\left(\bigcap\{\,X_\alpha:\alpha\in A\,\}\right)\leq |A|\cdot\sup\{\,\check{C}(X_\alpha):\alpha\in A\,\}.$$

This follows from Proposition 1.9, Proposition 1.10, and the fact that the intersection $\bigcap \{ X_{\alpha} : \alpha \in A \}$ is homeomorphic to a closed subspace of the product $\prod \{ X_{\alpha} : \alpha \in A \}$.

In particular,

1.12. Proposition. If Y is a G_{τ} -set in X, then $\check{C}(Y) \leq \tau \cdot \check{C}(X)$.

Proof. By Corollary 1.11, it is enough to verify that $\check{C}(G) \leq \check{C}(X)$ if G is open in X. Let \mathcal{U} be a family of open sets in βX such that $|\mathcal{U}| = \check{C}(X)$ and $X = \bigcap \mathcal{U}$, and let G' be an open set in βX such that $G = G' \cap X$. Let bG be the closure of G in βX , and put $\mathcal{V} = \{G' \cap bG\} \cup \{U \cap bG : U \in \mathcal{U}\}$. Then \mathcal{V} is a family of open sets in the compactification bG of G, $G = \bigcap \mathcal{V}$, and $|\mathcal{V}| \leq \check{C}(X)$. \square

2. The relation between the Čech numbers of $C_n(X)$ and $C_n(X,I)$.

We start from the comparison of the Čech numbers of $C_p(X)$ and $C_p(X, I)$; as we will see, the former is completely determined by the latter and the cardinality of X.

First note that $C_p(X,I)$ is a closed subspace of $C_p(X)$, so $\check{C}(C_p(X,I)) \leq \check{C}(C_p(X))$.

The following lemma is a consequence of Proposition 1.10.

- **2.1. Lemma.** For every infinite cardinal τ , $\check{C}(\mathbb{R}^{\tau}) = \tau$.
- **2.2. Proposition.** If $\check{C}(C_p(X,I)) \leq \tau$, then there are disjoint clopen subspaces X_0 and X_1 of X such that $X = X_0 \cup X_1$, $|X_0| \leq \tau$, and X_1 is discrete.

Proof. For a finite set $A \subset X$ and a real number $\varepsilon > 0$ define the set

$$O(A, \varepsilon) = \{ f \in I^X : |f(a)| < \varepsilon \text{ for all } a \in A \}.$$

Then the family

$$\{O(A,\varepsilon): A \text{ is a finite set in } X, \, \varepsilon > 0 \,\}$$

is a base for I^X at the point 0 (the function equal to 0 at all points of X). Note that $O(A, \varepsilon)$ contains the set Z(A) of all functions in I^X whose restrictions to A are zero.

Let \mathcal{U} be a family of cardinality $\tau = \check{C}(C_p(X,I))$ of open sets in I^{τ} such that $C_p(X,I) = \bigcap \mathcal{U}$. For every $U \in \mathcal{U}$ there is a finite set $A_U \subset X$ and an $\varepsilon_U > 0$ such that $O(A_U, \varepsilon_U) \subset U$. In particular, $Z(A_U) \subset U$. Let $B = \bigcup \{A_U : U \in \mathcal{U}\}$. Then $|B| \leq \tau$ if τ is infinite, and B is finite if $\tau = 1$. Furthermore, $Z(B) = \bigcap \{Z(A_U) : U \in \mathcal{U}\} \subset \bigcap \mathcal{U} = C_p(X,I)$; hence, every function in I^X whose restriction to B is equal to 0, is continuous. In particular, the characteristic function of $X \setminus B$ is continuous, whence B is clopen in X. Besides, every function from $X \setminus B$ to I is continuous, because it is the restriction to $X \setminus B$ of a function on X equal to 0 at every point of B. Thus, $X \setminus B$ is clopen and discrete.

To end the proof, put $X_0 = B$ and $X_1 = X \setminus B$ if τ is infinite, and $X_0 = \emptyset$ and $X_1 = X$ if $\tau = 1$. \square

Now all is ready to prove the main theorem of this section

2.3. Theorem. For every infinite space X, $\check{C}(C_p(X)) = |X| \cdot \check{C}(C_p(X,I))$.

Proof. Since always $\check{C}(C_p(X)) \geq \check{C}(C_p(X,I))$, we only need to prove $\check{C}(C_p(X)) \geq |X|$ and $\check{C}(C_p(X)) \leq |X| \cdot \check{C}(C_p(X,I))$.

Suppose by contradiction that $\tau = \check{C}(C_p(X)) < |X|$. We have $\check{C}(C_p(X,I)) \le \tau$, so by Proposition 2.2, there is a clopen partition $\{X_0, X_1\}$ of X such that $|X_0| \le \tau$ and X_1 is discrete. Since $|X| > \tau$, it follows that $|X_1| = |X|$. We have

$$C_n(X) = C_n(X_0) \times C_n(X_1) = C_n(X_0) \times \mathbb{R}^{X_1},$$

so \mathbb{R}^{X_1} is homeomorphic to a closed set in $C_p(X)$, and

$$|X| = |X_1| = \check{C}(\mathbb{R}^{X_1}) \le \check{C}(C_p(X)) = \tau,$$

a contradiction.

Let us now verify that $\check{C}(C_p(X)) \leq |X| \cdot \check{C}(C_p(X,I))$. Let $S = \mathbb{R} \cup \{-\infty,\infty\}$ be the compactification of \mathbb{R} homeomorphic to I; then $C_p(X,S)$ is homeomorphic to $C_p(X,I)$, so it is enough to prove that $\check{C}(C_p(X)) \leq |X| \cdot \check{C}(C_p(X,S))$. But $C_p(X) = \mathbb{R}^X \cap C_p(X,S)$, and the required inequality follows from Lemma 2.1 and Corollary 1.11. \square

3. $K(\tau, \lambda)$ -analytic spaces.

As we have seen, the calculation of the Čech number of a space reduces to the calculation of the compact-covering number of its complement in a compactification; for the spaces of the form $C_p(X,I)$ we have I^X as a natural compactification. We will now introduce certain classes of spaces that arise naturally in the calculation of the compact-covering numbers.

3.1. Definition. Let τ and λ be cardinals such that $\tau \geq 1$. We say that a space X is $K(\tau, \lambda)$ -analytic if X is a continuous image of a closed subspace of a product of τ^{λ} and a compact space.

Thus, for example, a space X is a $K(1, \lambda)$ -space if and only if X is compact, X is a $K(\tau, 1)$ -space if and only it is a union of $\leq \tau$ compact spaces, and the class of $K(\omega, \omega)$ -spaces is exactly the class of all K-analytic spaces.

We denote the class of all $K(\tau, \lambda)$ -analytic spaces as $\mathcal{K}(\tau, \lambda)$. Obviously, all compact sets are $K(\tau, \lambda)$ -analytic for any $\tau \geq 1$, $\mathcal{K}(\tau, \lambda) \subset \mathcal{K}(\sigma, \lambda)$ if $\tau \leq \sigma$ and $\mathcal{K}(\tau, \lambda) \subset \mathcal{K}(\tau, \mu)$ if $\lambda \leq \mu$.

Since the k-covering number is not increased in continuous images, closed subspaces and products with compact spaces, we have

- **3.2. Proposition.** If X is $K(\tau, \lambda)$ -analytic, then $kcov(X) \leq kcov(\tau^{\lambda})$.
- **3.3. Proposition.** Let τ and λ be infinite cardinals. The class $\mathcal{K}(\tau, \lambda)$ is invariant with respect to continuous images, closed subspaces, unions of families of cardinality $\leq \tau$, products of families of cardinality $\leq \lambda$, and intersections of families of cardinality $\leq \lambda$.

Proof. The invariance with respect to continuous images and closed subspaces is immediate from the definition. The union of a family of cardinality $\leq \tau$ of $K(\tau, \lambda)$ -analytic spaces can be represented as the continuous image of a closed subspace of the sum of τ copies of the product of τ^{λ} with a compact space, which is homeomorphic to the product of τ^{λ} with a compact space. The product of a family of cardinality $\leq \lambda$ of $K(\tau, \lambda)$ -analytic spaces can be represented as a continuous image (under the product mapping) of a closed subspace (the product of closed subspaces) of the product of $(\tau^{\lambda})^{\lambda} = \tau^{\lambda}$ with a compact space. Finally, an intersection of a family of cardinality $\leq \lambda$ of $K(\tau, \lambda)$ -analytic spaces is homeomorphic to a closed subspace of the product of this family. \square

Remark. Assume that τ is smaller than the first weakly inaccessible cardinal. Then ω^{τ} contains a closed discrete space of cardinality τ [Myc]; it follows that the classes $\mathcal{K}(\tau,\lambda)$ and $\mathcal{K}(\omega,\lambda)$ coincide whenever $\lambda \geq \tau$.

3.4. Corollary. If X is an $F_{\tau\lambda}$ -set in a compact space, then X is $K(\tau, \lambda)$ -analytic, and hence $kcov(X) \leq kcov(\tau^{\lambda})$.

It is easy to see that in fact, $\mathcal{K}(\tau, \lambda)$ is the minimal class of spaces that contains all compact spaces and is closed with respect to closed subspaces, continuous images, unions of families of cardinalities $\leq \tau$ and products of families of cardinalities $\leq \lambda$ (and also the minimal class of spaces that contains all compact spaces and is closed with respect to continuous images and $F_{\tau\lambda}$ -subspaces).

3.5. Corollary. If X is a $G_{\lambda\tau}$ -set in a compact space, then $\check{C}(X) \leq kcov(\tau^{\lambda})$.

Indeed, if X is a $G_{\lambda\tau}$ -set in some compact space, then it is also $G_{\lambda\tau}$ in its closure in this space, hence, in some of its compactification, and the complement of a $G_{\lambda\tau}$ -set is an $F_{\tau\lambda}$ -set.

In some cases, we can calculate the numbers $kcov(\tau^{\lambda})$. Of course, always $kcov(\tau^{\lambda}) \geq \tau$. Now, $kcov(\omega^{\omega}) = \mathfrak{d}$ (see, e.g., [vDou]; or we can consider this equality as the definition of \mathfrak{d}).

3.6. Proposition. If $\omega \leq \tau < \omega_{\omega}$, then $kcov(\tau^{\omega}) = \tau \cdot \mathfrak{d}$.

Proof. We will prove the statement for $\tau = \omega_n$ by induction on n. If $\tau = \omega = \omega_0$, the statement is true. Assuming that the equality is already proved for some $\tau = \omega_n$, we have, using $\mathrm{cf}(\omega_{n+1}) > \omega$,

$$\omega_{n+1}^{\omega} = \bigcup \{ \alpha^{\omega} : \alpha \in \omega_{n+1} \},\$$

and since for every $\alpha \in \omega_{n+1}$ we have $|\alpha| \leq \omega_n$, we have represented ω_{n+1}^{ω} as the union of ω_{n+1} subspaces whose k-covering numbers do not exceed $\omega_n \cdot \mathfrak{d}$. \square

Similarly,

- **3.7. Proposition.** For every infinite cardinal $\tau \geq \lambda$, $kcov((\tau^+)^{\lambda})) = \tau^+ \cdot kcov(\tau^{\lambda})$. and, somewhat more generally,
- **3.8. Proposition.** If $cf(\tau) > \lambda$, then

$$kcov(\tau^{\lambda}) = \tau \cdot \sup\{kcov(\mu^{\lambda}) : \mu < \tau\}.$$

It is easy to see that $kcov((\omega_{\omega})^{\omega}) > \omega_{\omega}$; the particular value of this number obviously is very dependent on additional set-theoretic assumptions.

Obviously, $kcov(\mathfrak{c}^{\omega}) = \mathfrak{c}$; we do not know the answer to the following:

- **3.9. Question.** Is it true that $kcov(\mathfrak{d}^{\omega}) = \mathfrak{d}$?
- 4. The Čech numbers for some $C_p(X,I)$.

In this section we calculate the Čech numbers for some spaces $C_p(X, I)$. Since I^X is a compactification of $C_p(X, I)$, trivially, $\check{C}(C_p(X, I)) \leq |I^X| = 2^{|X|}$.

4.1. Proposition. Let X be a space such that $C_p(X, I)$ is an $F_{\tau\lambda}$ -set in I^X . Then $\check{C}(C_p(X, I)) \leq kcov((|X| \cdot \tau)^{\lambda})$.

Proof. If U is an open set in I^X , then, since I^X is compact and has the weight equal to |X|, U is the union of at most |X| compact spaces, hence $K(|X| \cdot \tau, \lambda)$ -analytic. By Proposition 3.3, it follows that every $G_{\lambda\tau}$ -set in I^X is $K(|X| \cdot \tau, \lambda)$ -analytic, and hence has the k-covering number less or equal to $kcov((|X| \cdot \tau)^{\lambda})$. The statement now follows from Proposition 1.8 and the fact that the complement of an $F_{\tau\lambda}$ -set is a $G_{\lambda\tau}$ -set. \square

For a space X, denote by X' the set of all nonisolated points of X.

4.2. Theorem. Let X be a subspace of $C_p(Y)$. Then

$$\check{C}(C_p(X,I)) \le kcov((|X| \cdot kcov(Y))^{kcov(X')+\omega}).$$

Proof. Let $\tau = kcov(Y)$ and $\lambda = kcov(X') + \omega$. By Proposition 4.1, it is enough to prove that under the conditions of the theorem, $C_p(X, I)$ is an $F_{\tau\lambda}$ -set in I^X . Let $X' = \bigcup \{ K_{\alpha} : \alpha \in \lambda \}$ where each K_{α} is compact, and for every $\alpha \in \lambda$ let

$$C_{\alpha} = \{ f \in I^X : f \text{ is continuous at every point of } K_{\alpha} \}.$$

Clearly,

$$C_p(X, I) = \bigcap \{ C_\alpha : \alpha \in \lambda \},$$

so it suffices to prove that every C_{α} is an $F_{\tau\delta}$ -set in I^X .

Since the k-covering number is not increased by finite products, countable unions, closed subspaces and continuous images, and $kcov(Z) \leq \tau$ implies that Z is an F_{τ} -set in any larger space, the required statement follows from the next lemma. \square

- **4.3. Lemma.** Let X be a subspace of $C_p(Y)$, K a compact set in X, and let C be the set of all functions in I^X that are continuous at every point of K. Then there is a family $\{B_{mn}: m \in \mathbb{N}^+, n \in \mathbb{N}^+\}$ of subsets of I^X such that
 - (1) $C = \bigcap_{m \in \mathbb{N}^+} \bigcup_{n \in \mathbb{N}^+} B_{mn}$, and
 - (2) for any $m, n \in \mathbb{N}^+$, B_{mn} is a continuous image of a closed subspace of $Y^n \times I^X$.

Proof of the lemma. For every $n, m \in \mathbb{N}^+$ let

$$B_{mn} = \{ f \in I^X : \text{there is } (y_1, \dots, y_n) \in Y^n \text{ such that } |f(z) - f(x)| \le 1/m \}$$

whenever $x \in K, z \in X, \text{ and } |z(y_i) - x(y_i)| < 1/n, i = 1, \dots, n \}$

Claim 1.
$$C = \bigcap_{m \in \mathbb{N}^+} \bigcup_{n \in \mathbb{N}^+} B_{mn}$$
.

The inclusion $\bigcap_{m \in \mathbb{N}^+} \bigcup_{n \in \mathbb{N}^+} B_{mn} \subset C$ is trivial. To prove the inverse inclusion, let $f_0 \in C$ and $m \in \mathbb{N}^+$. We will find an $n \in \mathbb{N}^+$ so that $f_0 \in B_{mn}$.

For every $x \in K$ there are $n_x \in \mathbb{N}^+$ and points $y_{1x}, \ldots, y_{n_x x} \in Y$ such that the inequalities $|z(y_{1x}) - x(y_{1x})| < 1/n_x, \ldots, |z(y_{n_x x}) - x(y_{n_x x})| < 1/n_x$ imply $|f_0(z) - f_0(x)| < 1/2m$. The sets of the form

$$U_x = \{ z \in X : |z(y_{1x}) - x(y_{1x})| < 1/n_x, \dots, |z(y_{n_x x}) - x(y_{n_x x})| < 1/2n_x \}$$

 $x \in X$, are open in I^X and cover K. Let $\{U_{x_1}, \ldots, U_{x_k}\}$ be a finite subfamily of $\{U_x : x \in K\}$ that covers K. Put $n = 2(n_{x_1} + \cdots + n_{x_k})$, and let $\bar{y} = \{y_1, \ldots, y_n\}$ be a point in Y^n such that each point y_{jx_l} , $l \leq k$, $j \leq n_{x_l}$ is equal to at least one of y_i , $i \leq n$.

Let us verify that $f_0 \in B_{mn}$. Suppose $x \in K$ and $z \in X$ are such that $|z(y_1) - x(y_1)| < 1/n, \ldots, |z(y_n) - x(y_n)| < 1/n$. Then there is an $l \le k$ such that $x \in U_{x_l}$, and since $n \ge 2n_{x_l}$ and the set $\{y_{1x_l}, \ldots, y_{n_{x_l}x_l}\}$ is contained in the set $\{y_1, \ldots, y_n\}$, we have

$$|x(y_{1x_l}) - x_l(y_{1x_l})| < 1/n_{x_l}, \dots, |x(y_{n_{x_l}x_l}) - x_l(y_{n_{x_l}x_l})| < 1/n_{x_l}$$

and

$$|z_l(y_{1x_l}) - x_l(y_{1x_l})| < 1/n_{x_l}, \dots, |z_l(y_{n_x,x_l}) - x_l(y_{n_x,x_l})| < 1/n_{x_l},$$

whence $|f_0(x) - f_0(x_l)| < 1/2m$, $|f_0(z) - f_0(x_l)| < 1/2m$, and $|f_0(x) - f_0(z)| < 1/m$.

CLAIM 2. The set B_{mn} is a continuous image of a closed subspace of $Y^n \times I^X$. Let

$$F_{mn} = \{ (y_1, \dots, y_n, f) \in Y^n \times I^X : |f(z) - f(x)| \le 1/m$$
 whenever $x \in K, z \in X$, and $|z(y_i) - x(y_i)| < 1/n, i = 1, \dots, n \}.$

Then B_{mn} is the image of F_{mn} under the projection to I^X , and it is sufficient to verify that F_{mn} is closed in $Y^n \times I^X$.

Suppose $(y_1^0, ..., y_n^0, f_0) \in (Y^n \times I^X) \setminus F_{mn}$. Then there are $x_0 \in K$ and $z_0 \in X$ such that $|z_0(y_i^0) - x_0(y_i^0)| < 1/n$, i = 1, ..., n, and $|f_0(z_0) - f_0(x_0)| > 1/m$. The set

$$U = \{ (y_1, \dots, y_n, f) \in Y^n \times I^X :$$

 $|z_0(y_i) - x_0(y_i)| < 1/n, i = 1, \dots, n, \text{ and } |f(z_0) - f(x_0)| > 1/m \}$

is then a neighborhood of $(y_1^0, \ldots, y_n^0, f_0)$ in $Y^n \times I^X$ disjoint from F_{mn} . \square

Recall that a space X is an Eberlein-Grothendieck space (or an EG-space) [Arh1] if X is homeomorphic to a subspace of $C_p(K)$ for some compact space K. Note that, in particular, all metrizable spaces are EG-spaces [Arh1].

4.4. Corollary. If X is an EG-space, then $\check{C}(C_p(X,I)) \leq kcov((|X|)^{kcov(X')+\omega})$.

The compact EG-spaces are called *Eberlein compact spaces* [Arh1].

4.5. Corollary. If X is an Eberlein compact space (in particular, if X is a metrizable compact space), then $\check{C}(C_p(X,I)) \leq kcov(|X|^{\omega})$.

In particular,

4.6. Corollary. If X is an Eberlein compact space, and $|X| < \omega_{\omega}$, then

$$\check{C}(C_p(X,I)) \leq |X| \cdot \mathfrak{d}.$$

Recall that if $Y \subset X$, then a family \mathcal{B} of open sets in X is called a external base for Y in X if for every $y \in Y$ and a neighborhood U of y in X, there is a $B \in \mathcal{B}$ such that $y \in B \subset U$. The minimal cardinality of an external base for Y in X is called the external weight of Y in X and is denoted as w(Y, X).

4.7. Corollary. Always $\check{C}(C_n(X,I)) \leq kcov((|X| \cdot w(X',X))^{kcov(X')+\omega})$

Call the essential cardinality of a space X, ec(X), the minimal cardinality of a subspace of X whose complement is clopen and discrete. Thus, Proposition 2.2 says that

4.8. Corollary. $ec(X) \leq \check{C}(C_p(X,I))$.

Every space X has a subspace X_0 such that $|X_0| = ec(X_0)$ and $X_1 = X \setminus X_0$ is clopen and discrete; we have $C_p(X,I) = C_p(X_0,I) \times C_p(X_1,I) = C_p(X_0,I) \times I^{X_1}$. Since I^{X_1} is compact, $\check{C}(C_p(X,I)) = \check{C}(C_p(X_0,I))$. It follows that in all the statements in this section we can replace |X| by ec(X). Corollary 4.8 also gives us the first lower bound for the Čech number of $C_p(X,I)$.

4.9. Corollary. If X is a σ -compact EG-space of cardinality \mathfrak{c} , then $\check{C}(C_p(X,I)) = \check{C}(C_p(X)) = \mathfrak{c}$.

In particular,

4.10. Corollary. If X is an uncountable σ -compact metrizable space, then

$$\check{C}(C_p(X,I)) = \check{C}(C_p(X)) = \mathfrak{c}.$$

We will now establish another lower bound.

4.11. Lemma. Let $S = \{0\} \cup \{1/n : n \in \mathbb{N}^+\}$. Then $\check{C}(C_p(S, I)) = \mathfrak{d}$.

Proof. Corollary 4.5, $\check{C}(C_p(S,I)) \leq kcov(|S|^{\omega}) = kcov(\omega^{\omega}) = \mathfrak{d}$. On the other hand, $C_p(S,I)$ is an $F_{\sigma\delta}$ set, hence Borelian in I^S (a well-known fact, which also easily follows from Lemma 4.3), which is not a G_{δ} -set. By the Hurewicz theorem (see, e.g. Corollary 21.21 in [Kech]), $C_p(S,I)$ contains a closed homeomorphic copy of \mathbb{Q} , so $\check{C}(C_p(S,I)) \geq \check{C}(\mathbb{Q}) = kcov(\mathbb{P}) = \mathfrak{d}$. \square

4.12. Corollary. If X contains a convergent sequence, then $\check{C}(C_p(X,I)) \geq \mathfrak{d}$.

Proof. Let $T \subset X$ be a convergent sequence. Fix a countable set $\{f_n : n \in \omega\}$ of continuous functions from X to I that separates points of T, and consider the diagonal product $F = \Delta \{f_n : n \in \omega\} : X \to I^\omega$. Obviously, the space Y = F(X) is metrizable, and by the compactness of T, the restriction $F_T = F|T:T\to F(T)$ is a homeomorphism. By the Dugundji Extension Theorem [Dug], there is an extension operator $\psi \colon C_p(F(T),I) \to C_p(Y,I)$, that is, a mapping ψ such that $\psi(f)|F(T) = f$ for every $f \in C_p(F(T),I)$; it is easy to see from the construction of ψ in [Dug] that ψ is continuous with respect to the topologies of pointwise convergence. Define $\phi \colon C_p(T,I) \to C_p(X,I)$ by putting $\phi(g) = \psi((F_T^{-1} \circ g)) \circ F$ for all $g \in C_p(T,I)$.

Then ϕ is a continuous extension operator. The subspace $\phi(C_p(T,I))$ of $C_p(X,I)$ is homeomorphic to $C_p(T,I)$ under ϕ (the inverse mapping $g\mapsto g|T$ is continuous), and is a retract of $C_p(X,I)$ (with the retraction $g\mapsto \phi(g|T)$), hence is closed in $C_p(X,I)$. Therefore, $\check{C}(C_p(X,I))\geq \check{C}(C_p(T,I))=\check{C}(C_p(S,I))=\mathfrak{d}$. \square

- **4.13.** Corollary. If X is a non-discrete metrizable space, then $\check{C}(C_p(X,I)) \geq \mathfrak{d}$.
- **4.14. Corollary.** If X is a σ -compact metrizable space, then either $\check{C}(C_p(X,I)) = 1$ (if X is discrete), or $\check{C}(C_p(X,I)) = \mathfrak{d}$ (if X is countable non-discrete), or $\check{C}(C_p(X,I)) = \mathfrak{c}$ (if X is uncountable).

Proof. If X is countable and not discrete, then $\check{C}(C_p(X,I)) \leq \mathfrak{d}$ by Corollary 4.5 and $\check{C}(C_p(X,I)) \geq \mathfrak{d}$ by Corollary 4.13.

If X is uncountable, then $\check{C}(C_p(X,I)) = \mathfrak{c}$ by Corollary 4.10. \square

Since every infinite Eberlein compact space contains a convergent sequence (see Theorem 3.3.6 in [Arh2]), and obviously, ec(X) = |X| for every infinite compact space X, we get

4.15. Corollary. If X is an infinite Eberlein compact space, then $\check{C}(C_p(X)) \ge |X| \cdot \mathfrak{d}$.

Combining this with Corollary 4.6, we obtain

4.16. Proposition. If X is an infinite Eberlein compact space, and $|X| < \omega_{\omega}$, then $\check{C}(C_p(X,I)) = |X| \cdot \mathfrak{d}$.

The bounds we obtained for the Čech numbers of $C_p(X, I)$ for Eberlein compact spaces of cardinalities ω_{ω} and higher generally do not match, and we do not know now how to obtain the exact numbers, or even whether the cardinality of an Eberlein compact space X determines completely the Čech number of $C_p(X, I)$.

It seems worth to mention also the following consequence of Corollary 4.13.

4.17. Proposition. If X is an infinite pseudocompact space, then $\check{C}(C_p(X,I)) \geq \mathfrak{d}$.

Proof. If X is infinite and pseudocompact, then there is a continuous mapping F of X onto a non-discrete metrizable space M. By Theorem 7 in [Arh3], the mapping F is R-quotient, and by Proposition 0.4.10 in [Arh2], the dual mapping $F^*\colon C_p(M,I)\to C_p(X,I)$ is a closed embedding. Hence, $\check{C}(C_p(X,I))\geq \check{C}(C_p(M,I))\geq \mathfrak{d}$. \square

In the end of the section we find the Čech number of the function space for the space $\mathbb{P} = \omega^{\omega}$.

Recall that a space X is called *analytic* if it is a continuous image of \mathbb{P} ; a set A in a second-countable space Z is *coanalytic* if its complement in Z is analytic.

4.18. Theorem. $\check{C}(C_p(\mathbb{P},I)) = \mathfrak{c}$.

Proof. Since $ec(\mathbb{P}) = \mathfrak{c}$, we have $\check{C}(C_p(\mathbb{P},I)) \geq \mathfrak{c}$ by Corollary 4.8. For every $A \subset \mathbb{P}$ let $r_A \colon C_p(\mathbb{P}) \to C_p(A)$ be the restriction mapping defined by $r_A(f) = f|A$. Denote $C_p(X|A) = r_A(C_p(X))$ and $C_p(X|A,I) = r_A(C_p(X,I))$. It is proved in [Ok] that for every dense $A \subset \mathbb{P}$, the space $C_p(X|A)$ is coanalytic in \mathbb{R}^A . Since I^A is closed in \mathbb{R}^A , the analyticity is preserved by closed subsets, and $C_p(\mathbb{P}|A,I) = C_p(\mathbb{P}|A) \cap I^A$, the set $C_p(X|A,I)$ is coanalytic in I^A . Since $kcov(Z) \leq kcov(\mathbb{P}) = \mathfrak{d}$ for every analytic space Z, it follows that $C_p(X|A,I)$ is a $G_{\mathfrak{d}}$ -set in I^A .

Obviously, a function $f \colon \mathbb{P} \to I$ is continuous if and only if its restrictions to every dense countable set in \mathbb{P} admits a continuous extension to \mathbb{P} . In other words,

$$C_p(\mathbb{P}, I) = \bigcap \{ r_A^{-1}(C_p(\mathbb{P}|A, I)) : A \text{ is a countable dense subset of } \mathbb{P} \}.$$

For every dense countable A in \mathbb{P} , the preimage $r_A^{-1}(C_p(\mathbb{P}|A,I))$ of a $G_{\mathfrak{d}}$ -set in I^A under the continuous mapping r_A is a $G_{\mathfrak{d}}$ -set in $I^{\mathbb{P}}$. Since there are \mathfrak{c} countable dense sets in \mathbb{P} , we obtain a representation of $C_p(\mathbb{P},I)$ as the intersection of \mathfrak{c} of $G_{\mathfrak{d}}$ sets in a compact space $I^{\mathbb{P}}$, and hence $\check{C}(C_p(\mathbb{P},I)) \leq \mathfrak{c}$. \square

4.19. Question. Let X be a metrizable analytic non- σ -compact space of cardinality \mathfrak{c} . Is it true that $\check{C}(C_p(X,I)) = \mathfrak{c}$?

5. What is the minimal infinite Čech number of $C_p(X, I)$?.

As we have already mentioned, it is an easy consequence of the results from [LM] and [Tk] that ω is never the Čech number of a space $C_p(X,I)$. It seems probable from the results of the previous section that the minimal possible infinite value of $\check{C}(C_p(X,I))$ might be \mathfrak{d} , but we could not prove or disprove this. Thus, the following question remains open:

5.1. Question. Is there a non-discrete space X such that $\check{C}(C_p(X,I)) < \mathfrak{d}$?

We have found a lower bound for infinite values of $\check{C}(C_p(X,I))$, which is consistently equal to \mathfrak{c} , and hence is greater than any "given" cardinal.

Recall that the *Novak number* of a space X is

$$nov(X) = \min\{ |\mathcal{C}| : X = \bigcup \mathcal{C} \text{ and every element of } \mathcal{C} \text{ is nowhere dense in } X \}.$$

Let $\mathfrak{N} = \min\{\tau : I^{\tau} \text{ can be represented as a union of } \tau \text{ nowhere dense sets }\}.$

Of course, always $\omega_1 \leq \mathfrak{N} \leq \mathfrak{c}$, and Martin's Axiom implies $\mathfrak{N} = \mathfrak{c}$. Trivially, $\mathfrak{N} \leq nov(\mathbb{R}) \leq \mathfrak{d}$.

- **5.2. Question.** Is it true that $\mathfrak{N} = nov(\mathbb{R})$?
- **5.3. Theorem.** If X is a non-discrete space, then $\check{C}(C_p(X,I)) \geq \mathfrak{N}$.

Proof. Suppose there is a non-discrete space X with $\check{C}(C_p(X,I)) < \mathfrak{N}$. By Proposition 2.2, there is a clopen set X_0 in X such that $|X_0| < \mathfrak{N}$ and $X_1 = X \setminus X_0$ is discrete. Then X_0 is not discrete, and $C_p(X_0,I)$ is homeomorphic to a closed subspace of $C_p(X,I)$, whence $\check{C}(C_p(X_0,I)) \leq \check{C}(C_p(X,I)) < \mathfrak{N}$. Thus, we can assume without loss of generality that $|X| < \mathfrak{N}$. By Theorem 2.3, we get $\check{C}(C_p(X)) < \mathfrak{N}$.

Since X is not discrete, there is a discontinuous function $f_0 \in \mathbb{R}^X$. We have then $(f_0 + C_p(X)) \cap C_p(X) = \emptyset$, so $(\mathbb{R}^X \setminus C_p(X)) \cup (\mathbb{R}^X \setminus (f_0 + C_p(X))) = \mathbb{R}^X$.

Since $C_p(X)$ is a dense set in \mathbb{R}^X that is the intersection of $<\mathfrak{N}$ open sets, so is $f_0+C_p(X)$, and hence both $\mathbb{R}^X\setminus C_p(X)$ and $\mathbb{R}^X\setminus (f+C_p(X))$ are unions of $<\mathfrak{N}$ nowhere dense sets in \mathbb{R}^X . Thus, we have obtained a representation of \mathbb{R}^X with $|X|<\mathfrak{N}\leq nov(\mathbb{R})$ as a union of $<\mathfrak{N}$ nowhere dense sets, a contradiction with the definition of \mathfrak{N} . \square

We have already mentioned several open problems in the text. The next question also seems very interesting, and not easily resolvable:

5.4. Question. What is the Čech number of ΣI^{τ} ? (Here ΣI^{τ} is the Σ -product of τ copies of the segment I. Note that ΣI^{τ} is homeomorphic to $C_p(X,I)$ where X is the one-point Lindelöfication of the discrete space of cardinality τ).

In particular, what is the Čech number of ΣI^{ω_1} ? Is it equal to \mathfrak{d} ?

Note that Corollary 4.8 and Corollary 4.7 yield $\tau \leq \check{C}(\Sigma I^{\tau}) \leq kcov(\tau^{\omega})$.

References

[Arh1] A. V. Arhangel'skiĭ, Some topological spaces that arise in functional analysis, Russian Math. Surveys 31 (1976), no. 5, 14–30.

[Arh2] A. V. Arhangel'skiĭ, Topological Function Spaces, Kluwer Acad. Publ., Dordrecht, 1992.

[Arh3] A.V. Arhangel'askiĭ, On R-quotient mappings of spaces with countable base, Dokl. AN SSSR 287 (1986), no. 1, 14–17. (Russian)

[vDou] E. van Douwen, The integers and topology, Handbook of Set-Theoretic Topology, North-Holland, Amsterdam-New-York-Oxford, 1984, pp. 111-167.

[Dug] J. Dugundji,, An extension of Tietze's theorem, Pacific J. Math 1 (1951), 353–367.

[Eng] R. Engelking, General Topology, PWN, Warszawa, 1977.

[Kech] A. S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New-York, 1995.

[LM] D.J. Lutzer and R.A. McCoy, Category in function spaces, I, Pacific J. Math. 90 (1980), no. 1, 145-168.

[Myc] J. Mycielski, $\alpha\text{-}incompactness$ of $N^{\alpha},$ Bull. Acad. Po. Sci, Ser. Mat. Astr. Phys., $\bf 12~(1964),$ no. 8, 437–438.

[Ok] O. Okunev, On analyticity in cosmic spaces, Comment. Math. Univ. Carolinae 34 (1993), no. 1, 185–190.

[Tk] V.V. Tkachuk, Decomposition of $C_p(X)$ into a countable union of subspaces with "good" properties implies "good" properties of $C_p(X)$, Trans. Moscow Math. Soc. **55** (1994), 239-248.

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, U.N.A.M., CIUDAD UNIVERSITARIA, MÉXICO 04510, MÉXICO.

E-mail address: oleg@servidor.unam.mx

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, U.N.A.M., CIUDAD UNIVERSITARIA, MÉXICO 04510, MÉXICO.

E-mail address: atamariz@servidor.unam.mx