EXAMPLE OF A T_1 TOPOLOGICAL SPACE WITHOUT A NOETHERIAN BASE

ANGEL TAMARIZ-MASCARÚA AND RICHARD G. WILSON

(Communicated by Doug W. Curtis)

ABSTRACT. A Noetherian base \mathscr{B} of a topological space X is a base for the topology of X which has the following property: If $B_1 \subset B_2 \subset \cdots$ is a nondecreasing sequence of elements of \mathscr{B} , then $\{B_n\}_{n \in \mathbb{N}}$ is finite. In this article we give an example of a T_1 topological space without a Noetherian base.

I. Introduction.

DEFINITION 1.1. A collection \mathscr{C} of subsets of a set X is Noetherian if \mathscr{C} does not contain a strictly increasing infinite chain.

There are large classes of topological spaces which have a Noetherian base (see [3]), for example if X is a normed linear space, the collection of open balls of radius $1/n \ (n \in \mathbb{N})$ constitutes a Noetherian base of X. On the other hand, **R** with the topology $\tau = \{\emptyset, \mathbb{R}\} \cup \{(a, \infty): a \in \mathbb{R}\}$ is a non T_1 -space with no Noetherian base. An important unsolved problem is the following:

Does Con(ZFC) imply that $Con (ZFC + there exists a T_2-space without a Noetherian base)?$

However, the following is known:

THEOREM 1.2[1 and 4]. Let α be an ordinal. The space α has a Noetherian base if and only if $\alpha + 1$ does not contain a strongly inaccessible cardinal.

In the section that follows we give an example, in ZFC, of a T_1 -space that has no Noetherian base.

II. A T_1 topological space with no Noetherian base.

DEFINITION 2.1. A topological space X is Noetherianly refinable or in abbreviated notation, N-refinable, if each open covering has a Noetherian open refinement.

It is easy to see that if X has a Noetherian base then it is N-refinable and that X is N-refinable if and only if each open cover has a refinement which is an antichain of open sets.

LEMMA 2.2 [2]. Let α be an uncountable regular cardinal. Let $E \subset \alpha$ be a stationary subset of α and let $\phi: E \to \alpha$ be a regressive function. Then, there is $\xi < \alpha$ such that $|\phi^{-1}(\xi)| = \alpha$.

The work formed a part of the doctoral thesis of the first author, written at the Universidad Autónoma Metropolitana-Iztapalapa under the direction of the second author and Adalberto García-Máynez.

> ©1988 American Mathematical Society 0002-9939/88 \$1.00 + \$.25 per page

Received by the editors April 20, 1987 and, in revised form, August 18, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 54G20; Secondary 54D20. Key words and phrases. Noetherian base, N-refinable space.

For each $\lambda \leq \omega_1$, let $\mathscr{B}_{\lambda} = \{A \subset \lambda : |\lambda - A| < \aleph_0\}$. If $B_1, B_2 \in \mathscr{B} = \bigcup_{\lambda \leq \omega_1} \mathscr{B}_{\lambda}$, then $B_1 \cap B_2 \in \mathscr{B}$. Therefore \mathscr{B} is a base for a topology τ in ω_1 .

REMARK 2.3. $A \in \tau - \mathscr{B}$ if and only if $A = \lambda - C$, where $\lambda < \omega_1$ and C is a cofinal subset in λ of order type ω (o.t. $C = \omega$).

THEOREM 2.4. (ω_1, τ) is a T_1 -space which is not N-refinable (and therefore, (ω_1, τ) does not have a Noetherian base).

PROOF. Let us suppose that $\mathscr{A} \subset \tau$ is a refinement of $\mathscr{C} = \{\lambda + 1 : \lambda \in \omega_1\}$. Let $\lambda_0 = 0$ and let $A_0 \in \mathscr{A}$ be such that $\lambda_0 \in A_0$. Then, there is $\lambda_1 \in \omega_1$ such that $A_0 = \lambda_1 - C_1$, where C_1 is either finite or is an infinite cofinal subset of λ_1 of order type ω (see 2.3). Let $A'_0 = A_0 \cup \{\eta \in C_1 : \eta > \lambda_0\}$. Let $A_1 \in \mathscr{A}$ be such that $\lambda_1 \in A_1$. There is $\lambda_2 \in \omega_1$ such that $A_1 = \lambda_2 - C_2$, where C_2 is finite or is an infinite cofinal subset of λ_2 of order type ω . Let $A'_1 = A_1 \cup \{\eta \in C_2 : \eta > \lambda_1\}$.

Let us suppose that for some $\gamma < \omega_1$, we have chosen the collections: $\{\lambda_\beta\}_{\beta < \gamma} \subset \omega_1, \{A_\beta\}_{\beta < \gamma} \subset \mathscr{A}$ and $\{A'_\beta\}_{\beta < \gamma}$, such that $\lambda_\beta \in A_\beta = \lambda_{\beta+1} - C_{\beta+1}$, where $C_{\beta+1}$ is either finite or is an infinite cofinal subset of $\lambda_{\beta+1}$ of order type ω . Moreover, for each $\beta < \gamma$, $A'_\beta = A_\beta \cup \{\eta \in C_{\beta+1} : \eta > \lambda_\beta\}$.

We construct, inductively, $\lambda_{\gamma} \in \omega_1$, $A_{\gamma} \in \mathscr{A}$ and A'_{γ} :

If γ is a nonlimit ordinal and $\gamma - 1$ is the immediate predecessor of γ , then there exist $\lambda_{\gamma} < \omega_1$ such that $A_{\gamma-1} = \lambda_{\gamma} - C_{\gamma}$. If γ is a limit ordinal, let $\lambda_{\gamma} =$ $\sup\{\lambda_{\beta}: \beta < \gamma\}$. In both cases, let $A_{\gamma} \in \mathscr{A}$ such that $\lambda_{\gamma} \in A_{\gamma}$. There is $\lambda_{\gamma+1} \in \omega_1$ such that $A_{\gamma} = \lambda_{\gamma+1} - C_{\gamma+1}$ where $C_{\gamma+1}$ is either finite or is an infinite cofinal subset of $\lambda_{\gamma+1}$ of order type ω (see 2.3). Let $A'_{\gamma} = A_{\gamma} \cup \{\eta \in C_{\gamma+1}: \eta > \lambda_{\gamma}\}$.

By the inductive construction, $\{\lambda_{\beta}\}_{\beta < \omega_1}$ is cofinal in ω_1 .

Let $\mathscr{A}' = \{A'_{\beta} : \beta < \omega_1\}$. It is easy to see that each A'_{β} is an open set. In fact, $A'_{\beta} \in \mathscr{B}$ for each $\beta < \omega_1$.

We claim that:

(1) If \mathscr{A} is an antichain, then \mathscr{A}' is also an antichain.

In fact, let $A'_{\gamma}, A'_{\beta} \in \mathscr{A}'$ where $\gamma < \beta$. $A'_{\gamma} = A_{\gamma} \cup \{\eta \in C_{\gamma+1} : \eta > \lambda_{\gamma}\}$ and $A'_{\beta} = A_{\beta} \cup \{\eta \in C_{\beta+1} : \eta > \lambda_{\beta}\}$. A'_{γ} does not contain A'_{β} since $\lambda_{\beta} \in A'_{\beta} - A'_{\gamma}$. On the other hand, if $\eta_0 \in A_{\gamma} - A_{\beta}$, then $\eta_0 \in A'_{\gamma} - A'_{\beta}$. Therefore \mathscr{A}' is an antichain.

(2) Let $E' = \bigcup_{\gamma < \omega_1} A'_{\gamma}$ and let $G = \omega_1 - E'$. Then, the set G is empty or has order type $\leq \omega$. Furthermore $E = \{ \alpha \in E' : \alpha \text{ is a limit ordinal} \}$ is a stationary subset of ω_1 .

In fact, let us suppose that G is a subset of ω_1 such that o.t. $G > \omega$. Let $\eta_0 \in G$ be such that o.t. $\{\eta \in G : \eta < \eta_0\} > \omega$. Since $\{\lambda_\gamma\}_{\gamma < \omega_1}$ is a cofinal subset in ω_1 , then, there is λ_{ξ} such that $\eta_0 < \lambda_{\xi}$. But $\lambda_{\xi} \in A'_{\xi} = \lambda_{\xi+1} - C'_{\xi+1}$, where $C'_{\xi+1} = \{\eta \in C_{\xi+1} : \eta < \lambda_{\xi}\}$ and o.t. $C'_{\xi+1} \leq \omega$. Therefore $A'_{\xi} \cap G \neq \emptyset$. This contradiction proves that o.t. $G \leq \omega$. As an immediate consequence the set $E = \{\alpha \in E' : \alpha \text{ is a limit ordinal}\}$ is a stationary subset of ω_1 .

For each $\eta \in E$, let $g(\eta)$ be the smallest γ such that $\gamma \in A'_{\gamma} = \lambda_{\gamma+1} - C'_{\gamma+1}$. If $T_{\eta} = \{\xi < \omega_1 : \lambda_{\xi} \le \eta\}$, then $g(\eta) = \sup T_{\eta}$ and therefore $\lambda_{g(\eta)} \le \eta$. Since η is a limit ordinal, $\lambda_{g(\eta)} \le \eta$ and $\eta \in A'_{g(\eta)} = \lambda_{g(\eta)+1} - C'_{g(\eta)+1}$ (where $C'_{g(\eta)+1} \subset \lambda_{g(\eta)}$ is a finite set) there is $a_{\eta} < \eta$ such that $C'_{g(\eta)+1} \subset a_{\eta}$. The function $\phi(\eta) = a_{\eta}$ is a regressive function. Since E is a stationary subset in ω_1 , there is $\xi < \omega_1$ such that $|\phi^{-1}(\eta)| = \omega_1$ (Lemma 2.2). Let $M = \phi^{-1}(\xi)$. Since $|M| = \omega_1$ and

 $|\xi| = \omega$, there exist an infinite subset K of M and a finite subset $C \subset \xi$, such that $A'_{g(k)} = \lambda_{g(k)+1} - C$ for each $k \in K$. Therefore $\{A'_{g(k)} : k \in K\}$ is an infinite strictly increasing chain of elements of \mathscr{A}' . It follows from (1) that \mathscr{A} is not an antichain, that is, (ω_1, τ) is not N-refinable.

BIBLIOGRAPHY

- 1. E. K. van Douwen, Noetherian bases (manuscript).
- 2. I. Juhasz, Cardinal functions in topology, Mathematical Centre, Amsterdam, 1971.
- 3. A. Tamariz-Mascarúa, Bases Noetherianas en espacios topológicos, Tesis Doctoral, Universidad Autónoma Metropolitana-Iztapalapa, 1986.
- 4. ____, Noetherian bases in ordinal spaces, Bol. Soc. Mat. Mexicana 30 (1985).

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD NACION-AL AUTÓNOMA DE MÉXICO, CIUDAD UNIVERSITARIA, 04510 MÉXICO D.F. (Current address of Angel Tamariz-Mascarúa)

DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD AUTÓNOMA METROPOLITANA, UNIDAD IZTAPALAPA, 09340 MÉXICO D.F.

Current address (R. G. Wilson): Department of Mathematics, Lehman College, CUNY, Bronx, New York 10468